1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
3 years ago
13

HELPPPP PLEASE!!!!!!

Mathematics
1 answer:
Sergeu [11.5K]3 years ago
8 0

Answer:

x = 7

Step-by-step explanation:

7x - 12 = 9x - 26

7x - 12 = 9x - 26

+12 +12

7x = 9x - 14

7x = 9x - 14

-9x -9x

-2x = -14

-2x = -14

___. ___

-2 -2

x = 7

You might be interested in
Suppose that the number of drivers who travel between a particular origin and destination during a designated time period has a
kipiarov [429]

Answer:

a) P(k≤11) = 0.021

b) P(k>23) = 0.213

c) P(11≤k≤23) = 0.777

P(11<k<23) = 0.699

d) P(15<k<25)=0.687

Step-by-step explanation:

a) What is the probability that the number of drivers will be at most 11?

We have to calculate P(k≤11)

P(k\leq11)=\sum_0^{11} P(k

P(k=0) = 20^0e^{-20}/0!=1 \cdot 0.00000000206/1=0\\\\P(k=1) = 20^1e^{-20}/1!=20 \cdot 0.00000000206/1=0\\\\P(k=2) = 20^2e^{-20}/2!=400 \cdot 0.00000000206/2=0\\\\P(k=3) = 20^3e^{-20}/3!=8000 \cdot 0.00000000206/6=0\\\\P(k=4) = 20^4e^{-20}/4!=160000 \cdot 0.00000000206/24=0\\\\P(k=5) = 20^5e^{-20}/5!=3200000 \cdot 0.00000000206/120=0\\\\P(k=6) = 20^6e^{-20}/6!=64000000 \cdot 0.00000000206/720=0\\\\P(k=7) = 20^7e^{-20}/7!=1280000000 \cdot 0.00000000206/5040=0.001\\\\

P(k=8) = 20^8e^{-20}/8!=25600000000 \cdot 0.00000000206/40320=0.001\\\\P(k=9) = 20^9e^{-20}/9!=512000000000 \cdot 0.00000000206/362880=0.003\\\\P(k=10) = 20^{10}e^{-20}/10!=10240000000000 \cdot 0.00000000206/3628800=0.006\\\\P(k=11) = 20^{11}e^{-20}/11!=204800000000000 \cdot 0.00000000206/39916800=0.011\\\\

P(k\leq11)=\sum_0^{11} P(k

b) What is the probability that the number of drivers will exceed 23?

We can write this as:

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))

P(k=12) = 20^{12}e^{-20}/12!=8442485.238/479001600=0.018\\\\P(k=13) = 20^{13}e^{-20}/13!=168849704.75/6227020800=0.027\\\\P(k=14) = 20^{14}e^{-20}/14!=3376994095.003/87178291200=0.039\\\\P(k=15) = 20^{15}e^{-20}/15!=67539881900.067/1307674368000=0.052\\\\P(k=16) = 20^{16}e^{-20}/16!=1350797638001.33/20922789888000=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=27015952760026.7/355687428096000=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=540319055200533/6402373705728000=0.084\\\\

P(k=19) = 20^{19}e^{-20}/19!=10806381104010700/121645100408832000=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=216127622080213000/2432902008176640000=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=4322552441604270000/51090942171709400000=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=86451048832085300000/1.12400072777761E+21=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=1.72902097664171E+21/2.5852016738885E+22=0.067\\\\

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))\\\\P(k>23)=1-(0.021+0.766)=1-0.787=0.213

c) What is the probability that the number of drivers will be between 11 and 23, inclusive? What is the probability that the number of drivers will be strictly between 11 and 23?

Between 11 and 23 inclusive:

P(11\leq k\leq23)=P(x\leq23)-P(k\leq11)+P(k=11)\\\\P(11\leq k\leq23)=0.787-0.021+ 0.011=0.777

Between 11 and 23 exclusive:

P(11< k

d) What is the probability that the number of drivers will be within 2 standard deviations of the mean value?

The standard deviation is

\mu=\lambda =20\\\\\sigma=\sqrt{\lambda}=\sqrt{20}= 4.47

Then, we have to calculate the probability of between 15 and 25 drivers approximately.

P(15

P(k=16) = 20^{16}e^{-20}/16!=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=0.084\\\\P(k=19) = 20^{19}e^{-20}/19!=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=0.067\\\\P(k=24) = 20^{24}e^{-20}/24!=0.056\\\\

3 0
3 years ago
Given circle Q with a measure of SR=120° and a radius of 9 feet, as shown below.
Pie

Answer:

18.85 feet

Step-by-step explanation:

Determine the arc length of SR

Arc length = θ/360 × 2πr

r = 9 feet

θ =120°

Arc length = 120/360 × 2 × π × 9

= 18.849555922 feet

Approximately = 18.85 feet

Therefore, the arc length of SR = 18.85 feet

6 0
3 years ago
How do you simplify the inequality 4x-7&gt;1
ser-zykov [4K]
Solve it like an equation

4x-7>1
+7 +7

(-7+7)= 0 They cancel each other.

(1+7)=8

4x>8
/4 /4

(4/4) Cross it out, since they are both the same number. So, you stay with x.

(8÷4)= 2

You get x>2
4 0
3 years ago
PLEASE ANSWER ASASP<br> -5y + 4 = -11<br> what is y?
lorasvet [3.4K]

Answer:

3

Step-by-step explanation:

-5y + 4 = -11   Get rid of the numbers to get y alone.

-5y +4 minus 4 = -11 minus 4    Here you are removing the 4 from the left

-5y = -15       Now you will have to get rid of the -5

-5y/(-5) = -15/(-5)    

y = 3

3 0
3 years ago
Read 2 more answers
Question<br> Write the ratio 12.9 to 0.6 as a simplified fraction.
andrezito [222]

Answer:

21.5

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • Express the sum in the simplest form.
    10·2 answers
  • 24 is 0.6% of what number
    12·2 answers
  • HELP! FIVE QUESTIONS. NEED HELP ASAP!!
    5·1 answer
  • Endpoint 1: (-9,8) and midpoint is (2,-1) need to find endpoint 2
    13·1 answer
  • The figure below shows three quadrilaterals on a coordinate grid: A coordinate grid is shown from positive 8 to negative 8 on th
    10·1 answer
  • Plz help me with it
    9·2 answers
  • The volume of a rectangular prism is (x^3 – 3x^2 + 5x – 3), and the area of its base is (x^2 – 2). If the volume of a rectangula
    14·1 answer
  • A chip used in the production of particleboard (Question 4) has a 15% chance of containing excessive bark. What is the probabili
    7·1 answer
  • Determine two pairs of polar coordinates for the point (5, -5) with 0° ≤ θ &lt; 360°
    14·2 answers
  • PLEASE PLEASE PLEASE HELP
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!