Answer:
1.The force required to stop the shopping cart is, F = 12.25 N
Explanation:
Given data,
The mass of the shopping cart, m = 7 kg
The initial velocity of the shopping cart, u = 3.5 m/s
The final velocity of the shopping cart, v = 0 m/s
The time period of acceleration, t = 2 s
The change in momentum of the cart,
p = m(u - v)
= 7 (3.5 - 0)
= 24.5 kg m/s
The force is defined as the rate of change of momentum. To stop the shopping cart, the force required is given by the formula
F = p / t
= 24.5 / 2
= 12.25 N
Hence, the force required to stop the shopping cart is, F = 12.25 N
2.
We have: F = m × v/t
Here, m = 8500 Kg
v = 20 m/s
t = 10 s
Substitute their values into the expression,
F = 8500 × 20/10
F = 8500 × 2
F = 17000 N
In short, final answer would be 17000 N
Hope this helps!!
Explanation:
It is given that, the force of gravity pulls down on your school with a total force of 400,000 N.
The force of gravity is given by the formula as follows :
F = mg
m is mass and g is the acceleration due to gravity
Mass of an object remains same always. But if the mass of your school becomes twice of the initial mass, the force of gravity pulling down on your school would be exactly twice.
OPTION C is the correct answer.
I'm pretty sure it's the neutron star.