Answer:
B) False.
Explanation:
Most of the times, the numbers that appears right to the cursor are representing the coordinates (x & y) of the cursor. So as the cursor moves around the screen those number changes accordingly.Therefore its wrong to say that there is no need to add a dimension to set the dimensional value.
Answer: SI unit of pressure
Explanation: The pascal (pronounced pass-KAL and abbreviated Pa) is the unit of pressure or stress in the International System of Units (SI). Reduced to base units in SI, one pascal is one kilogram per meter per second squared; that is, 1 Pa = 1 kg · m-1 · s-2.
Hope this helps! Have a fantastic rest of ur day, luv!
Answer:
freezing point and melting point
<em>meter per</em><em> </em><em>second</em><em> </em><em>is </em><em>the </em><em>main </em><em>answer </em><em>of</em><em> </em><em>both</em>
Answer:
a) K = 0.63 J, b) h = 0.153 m
Explanation:
a) In this exercise we have a physical pendulum since the rod is a material object, the angular velocity is
w² =
where d is the distance from the pivot point to the center of mass and I is the moment of inertia.
The rod is a homogeneous body so its center of mass is at the geometric center of the rod.
d = L / 2
the moment of inertia of the rod is the moment of a rod supported at one end
I = ⅓ m L²
we substitute
w =
w =
w =
w = 4.427 rad / s
an oscillatory system is described by the expression
θ = θ₀ cos (wt + Φ)
the angular velocity is
w = dθ /dt
w = - θ₀ w sin (wt + Ф)
In this exercise, the kinetic energy is requested in the lowest position, in this position the energy is maximum. For this expression to be maximum, the sine function must be equal to ±1
In the exercise it is indicated that at the lowest point the angular velocity is
w = 4.0 rad / s
the kinetic energy is
K = ½ I w²
K = ½ (⅓ m L²) w²
K = 1/6 m L² w²
K = 1/6 0.42 0.75² 4.0²
K = 0.63 J
b) for this part let's use conservation of energy
starting point. Lowest point
Em₀ = K = ½ I w²
final point. Highest point
Em_f = U = m g h
energy is conserved
Em₀ = Em_f
½ I w² = m g h
½ (⅓ m L²) w² = m g h
h = 1/6 L² w² / g
h = 1/6 0.75² 4.0² / 9.8
h = 0.153 m