Answer:
a. the maximum number of σ bonds that the atom can form is 4
b. the maximum number of p-p bonds that the atom can form is 2
Explanation:
Hybridization is the mixing of at least two nonequivalent orbitals, in this case, we have the mixing of one <em>s, 3 p </em> and <em> 2 d </em> orbitals. In hybridization the number of hybrid orbitals generated is equal to the number of pure atomic orbital, so we have 6 hybrid orbital.
The shape of this hybrid orbital is octahedral (look the attached image) , it has 4 orbital located in the plane and 2 orbital perpendicular to it.
This shape allows the formation of maximum 4 σ bond, because σ bonds are formed by orbitals overlapping end to end.
And maximum 2 p-p bonds, because p-p bonds are formed by sideways overlapping orbitals. The atom can form one with each one of the orbitals located perpendicular to the plane.
<em>M CH₂O₂:</em>
mC + mH×2 + mO₂×2 = 12g + 1g×2 + 16g<span>×2 = <u>46g/mol</u>
:)</span>
Answer:
H2CO3 = 2H+ + CO3-
Explanation:
It is simply what carbonic acid breaks down into when placed in water. Since carbonic acid is made up of H and CO3, these are the products.