Answer: A pair of elements will most likely form an ionic bond if one is a metal and one is a nonmetal. These types of ionic compounds are composed of monatomic cations and anions.
Explanation:
A pair of elements will most likely form an ionic bond if one is a metal and one is a nonmetal. These types of ionic compounds are composed of monatomic cations and anions.
Explanation:
The chart below shows monatomic ions formed when an atom loses or gains one or more electrons, and the ionic compounds they form. You can check your periodic table to see that the cations are monatomic ions formed from metals, and the anions are monatomic ions formed from nonmetals.
Answer:
The answer to your question is 3 moles of AlCl₃
Explanation:
Process
1.- Write and balance the equation
Al(NO₃)₃ + 3NaCl ⇒ 3NaNO₃ + AlCl₃
2.- Determine the limiting reactant
Theoretical proportion 1 mol Al(NO₃)₃ : 3 moles of NaCl
Experimental proportion 4 moles Al(NO₃)₃ : 9 moles NaCl
From these values, we determine that the limiting reactant is NaCl because the number of moles increases three times and the number of moles of Al(NO₃)₃ increases four times.
3.- Determine the amount of AlCl₃ using proportions
3 moles of NaCl --------------- 1 mol of AlCl₃
9 moles of NaCl ---------------- x
x = (9 x 1) / 3
x = 9 /3
x = 3 moles
The heat/enthalpy of vaporization of water represents the energy input required to convert one mole of water into vapor at a constant temperature. Intermolecular forces including hydrogen bondings of significant strength hold water molecules in place under its liquid state. Whereas the molecules experience almost no intermolecular interactions under the gaseous state- consider the way noble gases molecules interact. It is thus necessary to supply sufficient energy to overcome all intermolecular interactions present in the substance under its liquid state to convert the substance into a gas. The heat of vaporization is thus related to the strength of the intermolecular interactions.
Water molecules contain hydrogen atoms bonded directly to oxygen atoms. Oxygen atoms are highly electronegative and take major control of electrons in hydrogen-oxygen bonds. Hydrogen atoms in water molecules thus experience a strong partial-positive charge and would attract lone pairs of electron on neighboring water molecules. "Hydrogen bonds" refer to the attraction between hydrogen atoms bonded to electronegative elements and lone pairs of electrons. The hydrogen-oxygen bonds in water molecules are so polarized that hydrogen bonds in water are stronger than both dipole-dipole interactions and London Dispersion Forces in most other molecules. It thus take high amounts of energy to separate water molecules sufficiently apart such that they no longer experience intermolecular interactions and behave collectively like a gas. As a result, water has one of the highest heat of vaporization among covalent molecules of similar sizes.
Answer:
42 liters of oxygen (liquid) weighs 47900 grams.
Explanation:
An organism that does not move on its own and makes food from its environment is a producer.