In order to solve the total pressure that is exerted by the gases, we need to use the Dalton's Law of Partial pressures. These are the calculations that you need to find out the total amount of pressure exerted to the gases:
3.00atm (N2) + 1.80atm (O2) + 0.29atm (Ar) + 0.18atm (He) + 0.10atm (H),
add up all of that, and the answer would turn out to be: 5.37atm.
Answer:
c
Explanation:
because the fire gives off radiation
Answer:
Inhalation (via the respiratory tract)Absorption (via mucous membranes such as the eyes) Ingestion (via the gastrointestinal tract)
Explanation:
The opening where an infectious disease enters the host's body such as mucus membranes, open wounds, or tubes inserted in body cavities like urinary catheters or feeding tubes.
It has to be D. the time needed to boil the water decreased
Answer:
The chemistry will need 2*10⁶ moles of antimony trifluoride.
Explanation:
The balanced reaction is:
3 CCl₄ (g) + 2 SbF₃ (s) → 3 CCl₂F₂(g) + 2 SbCl₃ (s)
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- CCl₄: 3 moles
- SbF₃: 2 moles
- CCl₂F₂: 3 moles
- SbCl₃: 2 moles
You can apply the following rule of three: if by reaction stoichiometry 3 moles of freon are produced by 2 moles of antimony trifluoride, 3*10⁶ moles of Freon are produced from how many moles of antimony trifluoride?

moles of antimony trifluoride= 2*10⁶
<u><em>The chemistry will need 2*10⁶ moles of antimony trifluoride.</em></u>