Complete Question
Evaluate the Fermi function for an energy kT above the Fermi energy. Find the temperature at which there is a 1% probability that a state, with an energy 0.5 eV above the Fermi energy, will be occupied by an electron.
Answer:
a
The Fermi function for the energy KT is ![F(E_o) = 0.2689](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%200.2689)
b
The temperature is ![T_k = 1261 \ K](https://tex.z-dn.net/?f=T_k%20%20%3D%20%201261%20%5C%20%20K)
Step-by-step explanation:
From the question we are told that
The energy considered is ![E = 0.5 eV](https://tex.z-dn.net/?f=E%20%3D%200.5%20eV)
Generally the Fermi function is mathematically represented as
![F(E_o) = \frac{1}{e^{\frac{[E_o - E_F]}{KT} } + 1 }](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5BE_o%20-%20E_F%5D%7D%7BKT%7D%20%7D%20%2B%201%20%7D)
Here K is the Boltzmann constant with value ![k = 1.380649 *10^{-23} J/K](https://tex.z-dn.net/?f=k%20%3D%201.380649%20%2A10%5E%7B-23%7D%20J%2FK)
is the Fermi energy
is the initial energy level which is mathematically represented as
![E_o = E_F + KT](https://tex.z-dn.net/?f=E_o%20%3D%20E_F%20%2B%20KT)
So
![F(E_o) = \frac{1}{e^{\frac{[[E_F + KT] - E_F]}{KT} } + 1}](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5B%5BE_F%20%2B%20KT%5D%20-%20E_F%5D%7D%7BKT%7D%20%7D%20%2B%201%7D)
=> ![F(E_o) = \frac{1}{e^{\frac{KT}{KT} } + 1}](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7BKT%7D%7BKT%7D%20%7D%20%2B%201%7D)
=> ![F(E_o) = \frac{1}{e^{ 1 } + 1}](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%201%20%7D%20%2B%201%7D)
=> ![F(E_o) = 0.2689](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%200.2689)
Generally the probability that a state, with an energy 0.5 eV above the Fermi energy, will be occupied by an electron is mathematically represented by the Fermi function as
![F(E_k) = \frac{1}{e^{\frac{[E_k - E_F]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=F%28E_k%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5BE_k%20-%20E_F%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
Here
is that energy level that is 0.5 ev above the Fermi energy ![E_k = 0.5 eV + E_F](https://tex.z-dn.net/?f=E_k%20%3D%200.5%20eV%20%20%2B%20E_F)
=> ![F(E_k) = \frac{1}{e^{\frac{[[0.50 eV + E_F] - E_F]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=F%28E_k%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5B%5B0.50%20eV%20%2B%20E_F%5D%20-%20E_F%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
=> ![\frac{1}{e^{\frac{0.50 eV ]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
=> ![1 = 0.01 * e^{\frac{0.50 eV ]}{KT_k} } + 0.01](https://tex.z-dn.net/?f=1%20%3D%200.01%20%2A%20e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%2B%200.01)
=> ![0.99 = 0.01 * e^{\frac{0.50 eV ]}{KT_k} }](https://tex.z-dn.net/?f=0.99%20%3D%200.01%20%2A%20e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D)
=> ![e^{\frac{0.50 eV ]}{KT_k} } = 99](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%20%3D%2099)
Taking natural log of both sides
=> ![\frac{0.50 eV }{KT_k} } =4.5951](https://tex.z-dn.net/?f=%5Cfrac%7B0.50%20eV%20%7D%7BKT_k%7D%20%7D%20%20%3D4.5951)
=> ![0.50 eV =4.5951 * K * T_k](https://tex.z-dn.net/?f=0.50%20eV%20%20%20%3D4.5951%20%2A%20%20K%20%2A%20%20T_k)
Note eV is electron volt and the equivalence in Joule is ![eV = 1.60 *10^{-19} \ J](https://tex.z-dn.net/?f=eV%20%20%3D%20%201.60%20%2A10%5E%7B-19%7D%20%5C%20%20J)
So
![0.50 * 1.60 *10^{-19 } =4.5951 * 1.380649 *10^{-23} * T_k](https://tex.z-dn.net/?f=0.50%20%2A%201.60%20%2A10%5E%7B-19%20%7D%20%20%20%3D4.5951%20%2A%20%201.380649%20%2A10%5E%7B-23%7D%20%2A%20%20T_k)
=> ![T_k = 1261 \ K](https://tex.z-dn.net/?f=T_k%20%20%3D%20%201261%20%5C%20%20K)