The options are labelled as:
1 2
3 4
5 6
7 8
Protons: 1, 5, 7
Neutrons: 2, 8
Electron: 3, 4, 6
Answer:
8.3 kJ
Explanation:
In this problem we have to consider that both water and the calorimeter absorb the heat of combustion, so we will calculate them:
q for water:
q H₂O = m x c x ΔT where m: mass of water = 944 mL x 1 g/mL = 944 g
c: specific heat of water = 4.186 J/gºC
ΔT : change in temperature = 2.06 ºC
so solving for q :
q H₂O = 944 g x 4.186 J/gºC x 2.06 ºC = 8,140 J
For calorimeter
q calorimeter = C x ΔT where C: heat capacity of calorimeter = 69.6 ºC
ΔT : change in temperature = 2.06 ºC
q calorimeter = 69.60J x 2.06 ºC = 143.4 J
Total heat released = 8,140 J + 143.4 J = 8,2836 J
Converting into kilojoules by dividing by 1000 we will have answered the question:
8,2836 J x 1 kJ/J = 8.3 kJ
<span>In the electron cloud model, the denser areas represent that there is a great probability that a good number of electrons are ganged up or crowded in that area. The electrons affect the density of some parts of the electron cloud when they condense in those locations.</span>
Both fission and fusion are nuclear reactions that produce energy, but the applications are not the same. Fission is the splitting of a heavy, unstable nucleus into two lighter nuclei, and fusion is the process where two light nuclei combine together releasing vast amounts of energy.
Answer:
you better give me brainliest
Explanation:
Zinc nitrate and calcium nitrate solution can be distinguished by reaction with ammonium hydroxide. Zinc forms a white gelatinous ppt. whereas there is no precipitation of calcium hydroxide even with excess of ammonium hydroxide