Identical electron configurations : K⁺ and Cl⁻
<h3>Further explanation </h3>
In an atom, there are levels of energy in the shell and sub-shell
This energy level is expressed in the form of electron configurations.
Charging electrons in the sub-shell uses the following sequence:
<em>1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁶, 5s², 4d¹⁰, 5p⁶, 6s², etc. </em>
S²⁻ : [Ne] 3s²3p⁶
Cl : [Ne] 3s²3p⁵
K⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶
Cl⁻ : 1s² 2s² 2p⁶ 3s²3p⁶
S :[Ne] 3s²3p⁴
Ar : [Ne] 3s²3p⁶
Cl⁻ : 1s² 2s² 2p⁶ 3s²3p⁶
K : 1s² 2s² 2p⁶ 3s² 3p⁶4s¹
Answer:
A
Explanation:
No temperature change was observed, hence the change is neither exothermic nor endothermic. Hence the answer is A.
True but in more depth they both have the some same qualities in function but provide for each other when one makes oxygen, H2O, and energy and cellular respiration makes CO2 and glucose
Answer:
9x+y+8
Explanation:
We know this because you add 3x and 6x to get 9x
then we only have one y so put y by itself then subtract 15 and y which gets us 8
Answer:

Explanation:
They gave us the masses of two reactants and asked us to determine the mass of the product.
This looks like a limiting reactant problem.
1. Assemble the information
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 239.27 32.00 207.2
2PbS + 3O₂ ⟶ 2Pb + 2SO₃
m/g: 2.54 1.88
2. Calculate the moles of each reactant

3. Calculate the moles of Pb from each reactant

4. Calculate the mass of Pb
