Answer:

Step-by-step explanation:
So the first step is to add like terms since you can simplify the numerator by adding the two values sine they have the same variable and degree.
Add like terms:
![[\frac{8x^9}{2x}]^5](https://tex.z-dn.net/?f=%5B%5Cfrac%7B8x%5E9%7D%7B2x%7D%5D%5E5)
Divide by 2x (divide coefficient by 2, subtract coefficient degrees)
![[4x^8]^5](https://tex.z-dn.net/?f=%5B4x%5E8%5D%5E5)
Multiply exponents and raise 4 to the power of 5

The reason you multiply exponents is because you can think about it like this:
(4 * x * x * x * x * x * x * x * x) (this has one 4 and 8 x's because x is raised to the power of 8. Now if you do that 5 times which is what the exponent is doing you're going to have 40 x's and 8 4's. So it's essentially
(4 * x * x * x * x * x * x * x * x) * (4 * x * x * x * x * x * x * x * x) * (4 * x * x * x * x * x * x * x * x) * (4 * x * x * x * x * x * x * x * x) * (4 * x * x * x * x * x * x * x * x). If you group like terms you'll get (4 * 4 * 4 * 4 * 4) * (x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x * x). Which simplifies to 4^5 * x ^ (8 * 5) which further simplifies to the answer 1024x^40
Answer:
The length of the sloping section of the ramp is 20.12 m
Step-by-step explanation:
Given;
the total height of the bank, h = 2.8 m
The slope of the ramp must be 8° to the horizontal, i.e, θ = 8°
Let the length of the sloping section = L
let the horizontal distance between the height of the bank and sloping section = b
Thus, h, L and b forms three sides of a right angled-triangle, with L as the hypotenuse side, h (height of the triangle) as the opposite side and b (base of the triangle) as the adjacent side.
We determine L by applying the following formula;
Sinθ = opposite / hypotenuse
Sin θ = h / L
L = h / Sin θ
L = 2.8 / Sin 8
L = 2.8 / 0.13917
L = 20.12 m
Therefore, the length of the sloping section of the ramp is 20.12 m
When a point P(a, b) is reflected about the y-axis, the coordinates of the reflected point are P'(-a, b).
Thus, the reflection of point (3, 7) is (-3, 7), as shown in the picture.
Answer: (-3, 7)