<span>The number of cell phone minutes used by high school seniors follows a normal distribution with a mean of 500 and a standard deviation of 50. what is the probability that a student uses more than 580 minutes?
Given
μ=500
σ=50
X=580
P(x<X)=Z((580-500)/50)=Z(1.6)=0.9452
=>
P(x>X)=1-P(x<X)=1-0.9452=0.0548=5.48%
</span>
Answer:
46 housewives read all three magazines.
Step-by-step explanation:
Given:
n(A) = 150
n(B) = 200
n(C) = 156
n(A∩B) = 48
n(B∩C) = 60
n(A∩C) = 52
n(A∪B∪C) = 300
so we know the relation as:
n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)
∴ n(A∩B∩C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) - n(A∪B∪C)
= 150 + 200+ 156 - 48 - 60 - 52 - 300
= 46
Hence the number of housewives that had read all three magazine is 46.
Answer: 348.8 miles on 16 gallons of gas
Step-by-step explanation:
Make the following proportion:
= 
Since the car consumes gas at the same rate and only the amount of gas is changed, these two fractions must be equivalent. If the rate at which the car consumes gas changes, it would be different.
Use basic algebraic skills and you should get 348.8 miles.
C= 2000 + 3(2500)
C= 2000 + 7,500
C= $9,500