Answer with explanation:
1. The given equations are
3x -5 y=2
-x+2 y= 0
⇒The matrix in the form of , AX=B, is
![A=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right] ,\\\\ X=\left[\begin{array}{c}x&y\end{array}\right],\\\\B=\left[\begin{array}{c}2&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-5%5C%5C-1%262%5Cend%7Barray%7D%5Cright%5D%20%2C%5C%5C%5C%5C%20X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%2C%5C%5C%5C%5CB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%260%5Cend%7Barray%7D%5Cright%5D)

Adj.A=Transpose of cofactor of Matrix A
![Adj.A=\left[\begin{array}{cc}2&1\\5&3\end{array}\right] ,\\\\ |A|=6-5\\\\|A|=1\\\\\left[\begin{array}{c}x&y\end{array}\right]=\left[\begin{array}{cc}2&5\\1&3\end{array}\right] \times \left[\begin{array}{c}2&0\end{array}\right]\\\\x=4, y=2](https://tex.z-dn.net/?f=Adj.A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C5%263%5Cend%7Barray%7D%5Cright%5D%20%2C%5C%5C%5C%5C%20%7CA%7C%3D6-5%5C%5C%5C%5C%7CA%7C%3D1%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%265%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cx%3D4%2C%20y%3D2)
2.
The given equations are
x+y-z=2
x+z=7
2 x +y+z=13
⇒The matrix in the form of , AX=B, is
![A=\left[\begin{array}{ccc}1&1&-1\\1&0&1\\2&1&1\end{array}\right]\\\\ X=\left[\begin{array}{ccc}x\\y\\z\end{array}\right]\\\\B= \left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\\rightarrow X=A^{-1}B\\\\\rightarrow X=\frac{Adj.A}{|A|}\times B\\\\a_{11}=-1,a_{12}=1,a_{13}=1,a_{21}=-2,a_{22}=3,a_{23}=1,a_{31}=1,a_{32}=-2,a_{33}=-1\\\\|A|=1\times(0-1)-1\times(1-2)-1\times(1-0)\\\\=-1+1-1\\\\|A|=-1\\\\Adj.A=\left[\begin{array}{ccc}-1&-2&1\\1&3&-2\\1&1&-1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%26-1%5C%5C1%260%261%5C%5C2%261%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%20X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C7%5C%5C13%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Crightarrow%20X%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Crightarrow%20X%3D%5Cfrac%7BAdj.A%7D%7B%7CA%7C%7D%5Ctimes%20B%5C%5C%5C%5Ca_%7B11%7D%3D-1%2Ca_%7B12%7D%3D1%2Ca_%7B13%7D%3D1%2Ca_%7B21%7D%3D-2%2Ca_%7B22%7D%3D3%2Ca_%7B23%7D%3D1%2Ca_%7B31%7D%3D1%2Ca_%7B32%7D%3D-2%2Ca_%7B33%7D%3D-1%5C%5C%5C%5C%7CA%7C%3D1%5Ctimes%280-1%29-1%5Ctimes%281-2%29-1%5Ctimes%281-0%29%5C%5C%5C%5C%3D-1%2B1-1%5C%5C%5C%5C%7CA%7C%3D-1%5C%5C%5C%5CAdj.A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26-2%261%5C%5C1%263%26-2%5C%5C1%261%26-1%5Cend%7Barray%7D%5Cright%5D)
![\frac{Adj.A}{|A|}=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\\\\X=A^{-1}B\\\\\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\times\left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\x=3,y=3,z=4](https://tex.z-dn.net/?f=%5Cfrac%7BAdj.A%7D%7B%7CA%7C%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26-1%5C%5C-1%26-3%262%5C%5C-1%26-1%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CX%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26-1%5C%5C-1%26-3%262%5C%5C-1%26-1%261%5Cend%7Barray%7D%5Cright%5D%5Ctimes%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C7%5C%5C13%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cx%3D3%2Cy%3D3%2Cz%3D4)
300/20 = 15
she can skip 15 feet per second
hope this helps
The way you typed it, it seems like you need to know the total number of beads, which would be 300
Answer:
yes if u use Pemdas and both sides of the equation have the same answer, they both are equivalent.
Good job!
Answer:
x=6
Step-by-step explanation:
Take -2 and add it to 10 and get 12. So then the equation is 2x=12. Divide 2 by 12 and get x=6.