use the power-reducing formulas to rewrite the expression in terms of the first power of the cosine . . sin^6 x
1 answer:
<span>1/128 (3 - 4 Cos[4 x] + Cos[8 x])</span>( sin^2(x) )^2 cos^4(x)
<span>( (1 - cos^2(x) )^2 cos^4(x) </span>
<span>(1 - 2cos^2(x) + cos^4(x) ) cos^4(x) </span>
<span>cos^4(x) - 2cos^6(x) + cos^8(x) </span>
<span>( cos^2(x) )^2 - 2( cos^2(x) )^3 + ( cos^2(x) )^4 <==> knowing the identity; cos^2(x) = (1/2) * (1 + cos(2x)) </span>
<span>( (1/2) * (1 + cos(2x)) )^2 - 2( (1/2) * (1 + cos(2x)) )^3 + ( (1/2) * (1 + cos(2x)) )^4 </span>
( (1/4) * (1 + 2cos(2x) + cos^2(2x) )) - 2( (1/8) * (cos^3(2x) + 3cos^2(2x) + 3cos(2x) + 1) + ( (1/16) * cos^4(2x) + 4cos^3(2x) + 6cos^2(2x) + 4cos(2x) + 1)
You might be interested in
Answer:
b
Step-by-step explanation:
I just did it in my math class and got it right
Answer:
-13
Step-by-step explanation:
-41 + -8 + 36
-49 + 36
-13
Answer:
Step-by-step explanation:
5.9 I had this your welcome
Length: 2x-1, width: x
A=LW
120=x(2x-1) 120=2x^2-x 0=2x^2-x-120, Factor (x-8)(2x+15)=0
x=8 is the width and 15 is the length