Answer:
If angle a and b are complementary angles, and angle a is 64, complementary equals 90, so 90-64= 26 degrees for angle b.
A. Linear y= -x - 1 would be the answer
since we know the endpoints of the circle, we know then that distance from one to another is really the diameter, and half of that is its radius.
we can also find the midpoint of those two endpoints and we'll be landing right on the center of the circle.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-2-(-4)]^2+[-5-(-7)]^2}\implies d=\sqrt{(-2+4)^2+(-5+7)^2} \\\\\\ d=\sqrt{2^2+2^2}\implies d=\sqrt{2\cdot 2^2}\implies d=2\sqrt{2}~\hfill \stackrel{~\hfill radius}{\cfrac{2\sqrt{2}}{2}\implies\boxed{ \sqrt{2}}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-7%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-5%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B-2-%28-4%29%5D%5E2%2B%5B-5-%28-7%29%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-2%2B4%29%5E2%2B%28-5%2B7%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B2%5E2%2B2%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B2%5Ccdot%202%5E2%7D%5Cimplies%20d%3D2%5Csqrt%7B2%7D~%5Chfill%20%5Cstackrel%7B~%5Chfill%20radius%7D%7B%5Ccfrac%7B2%5Csqrt%7B2%7D%7D%7B2%7D%5Cimplies%5Cboxed%7B%20%5Csqrt%7B2%7D%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5})\qquad \qquad \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{-2-4}{2}~~,~~\cfrac{-5-7}{2} \right)\implies \left( \cfrac{-6}{2}~,~\cfrac{-12}{2} \right)\implies \stackrel{center}{\boxed{(-3,-6)}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-7%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-2%7D~%2C~%5Cstackrel%7By_2%7D%7B-5%7D%29%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%20%5Ccfrac%7B-2-4%7D%7B2%7D~~%2C~~%5Ccfrac%7B-5-7%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cleft%28%20%5Ccfrac%7B-6%7D%7B2%7D~%2C~%5Ccfrac%7B-12%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cstackrel%7Bcenter%7D%7B%5Cboxed%7B%28-3%2C-6%29%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-3}{ h},\stackrel{-6}{ k})\qquad \qquad radius=\stackrel{\sqrt{2}}{ r} \\[2em] [x-(-3)]^2+[y-(-6)]^2=(\sqrt{2})^2\implies (x+3)^2+(y+6)^2=2](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%20%5Cqquad%20center~~%28%5Cstackrel%7B-3%7D%7B%20h%7D%2C%5Cstackrel%7B-6%7D%7B%20k%7D%29%5Cqquad%20%5Cqquad%20radius%3D%5Cstackrel%7B%5Csqrt%7B2%7D%7D%7B%20r%7D%20%5C%5C%5B2em%5D%20%5Bx-%28-3%29%5D%5E2%2B%5By-%28-6%29%5D%5E2%3D%28%5Csqrt%7B2%7D%29%5E2%5Cimplies%20%28x%2B3%29%5E2%2B%28y%2B6%29%5E2%3D2)
Answer:
160 dollars per month
Step-by-step explanation:
Well you know the total amount paid is 480 dollars and payments are made once a month for three months.
Divide 480 by three to find the amount paid per month
480/3=160
160 dollars per month
Answer:
70
Step-by-step explanation:
the 7 is in the tenths place of the number, so its value is 70