Ohh wow nice, do your own work lazy person
Answer:
Given a triangle ABC, Pythagoras' Theorem shows that:
Thus,
The distance formula, gives an equivalent expression based on two points at the end of the hypotenuse for a triangle.
Therefore when given the hypotenuse with endpoints at
We know that the third point of the right triangle will be at
and that the two side lengths will be defined by the absolute values of:
Answer:
Step-by-step explanation:
Directions
- Draw a circle
- Dear a chord with a length of 24 inside the circle. You just have to label it as 24
- Draw a radius that is perpendicular and a bisector through the chord
- Draw a radius that is from the center of the circle to one end of the chord.
- Label where the perpendicular radius to the chord intersect. Call it E.
- You should get something that looks like the diagram below. The only thing you have to do is put in the point E which is the midpoint of CB.
Givens
AC = 13 inches Given
CB = 24 inches Given
CE = 12 inches Construction and property of a midpoint.
So what we have now is a right triangle (ACE) with the right angle at E.
What we seek is AE
Formula
AC^2 = CE^2 + AE^2
13^2 = 12^2 + AE^2
169 = 144 + AE^2 Subtract 144 from both sides.
169 - 144 = 144-144 + AE^2 Combine
25 = AE^2 Take the square root of both sides
√25 = √AE^2
5 = AE
Answer
The 24 inch chord is 5 inches from the center of the circle.
Answer:
4 4/5
Step-by-step explanation:
Answer:
c)26 or positive and negative