That any number plus 0 is equal to the number itself.
Answer:
4/3
Step-by-step explanation:
To know this, let's write down the formulas for the volume of cylinder and sphere.
Vs = 4/3πr³ (1)
Vc = π r² h (2)
Now, we do have a little problem here and its the fact that the sphere do not have a height like the cylinder do. But in this case so if you want to have an idea of the fraction of the volume, we will assume that the cylinder has the same height as its radius. Assuming this we have the following:
Vs / Vc = 4πr³ / 3πr²h
Vs/Vc = 4πr³ / 3πr³
From here, we can cancel out the values of π and r³:
Vs/Vc = 4/3
<h2>
Vs = 4/3 Vc</h2>
Thus we can conclude that the volume of the sphere is 4/3 the volume of a cylinder.
Hope this helps
Split the second term in 6x^2 + 17x + 5 into two terms
6x^2 + 15x + 2x + 5 = 0
Factor out common terms in the first two terms, then in the last two terms.
3x(2x + 5) + (2x + 5) = 0
Factor out the common term 2x + 5
(2x + 5)(3x + 1) = 0
Solve for x
<u>x = -5/2, -1/3</u>
8,192 because
1 on 1
2 on 2
4 on 3
8 on 4
16 on 5
32 on 6
64 on 7
128 on 8
256 on 9
512 on 10
1024 on 11
2048 on 12
4096 on 13
8192 on 14
Volume
of a rectangular box = length x width x height<span>
From the problem statement,
length = 60 - 2x
width = 10 - 2x
height = x</span>
<span>
where x is the height of the box or the side of the equal squares from each
corner and turning up the sides
V = (60-2x) (10-2x) (x)
V = (60 - 2x) (10x - 2x^2)
V = 600x - 120x^2 -20x^2 + 4x^3
V = 4x^3 - 100x^2 + 600x
To maximize the volume, we differentiate the expression of the volume and
equate it to zero.
V = </span>4x^3 - 100x^2 + 600x<span>
dV/dx = 12x^2 - 200x + 600
12x^2 - 200x + 600 = 0</span>
<span>x^2 - 50/3x + 50 = 0
Solving for x,
x1 = 12.74 ; Volume = -315.56 (cannot be negative)
x2 = 3.92 ;
Volume = 1056.31So, the answer would be that the maximum volume would be 1056.31 cm^3.</span><span>
</span>