Answer:
W = 2.3 10² 
Explanation:
The force of the weight is
W = m g
let's use the concept of density
ρ= m / v
the volume of a sphere is
V =
π r³
V =
π (1.0 10⁻³)³
V = 4.1887 10⁻⁹ m³
the density of water ρ = 1000 kg / m³
m = ρ V
m = 1000 4.1887 10⁻⁹
m = 4.1887 10⁻⁶ kg
therefore the out of gravity is
W = 4.1887 10⁻⁶ 9.8
W = 41.05 10⁻⁶ N
now let's look for the electric force
F_e = q E
F_e = 12 10⁻¹² 15000
F_e = 1.8 10⁻⁷ N
the relationship between these two quantities is
= 41.05 10⁻⁶ / 1.8 10⁻⁷
\frac{W}{F_e} = 2,281 10²
W = 2.3 10² 
therefore the weight of the drop is much greater than the electric force
Answer:
False
Explanation:
The trachea divides into left and right air tubes called bronchi, which connect to the lungs. Within the lungs, the bronchi branch into smaller bronchi and even smaller tubes called bronchioles.
Hope this helps :)
The term b^2 / 4a^2 is not added to the left side of the equation, because the term that was added to the right was not either b^2 / 4 a^2.
As you can see the ther b^2 / 4a^2 that appears in the last step of the table is inside a parenthesis, which is preceded by factor a.
Then, you need to apply the distributive property to know the term that you are really adding to the right side, i.e. you need to mulitply b^2 / 4a^2 * a which is b^2 / 4a.
That means that you are really adding b^2 / 4a to the right, so that is the same that you have to add to the left, which is what the last step of the table shows.
That situation is reflected by the statement "<span>The
distributive property needs to be applied to determine the value to add
to the left side of the equation to balance the sides of the equation".</span> That is the answer.
45° × π/180 = 0,7854 rad
ω = θ /t
ω = 0.7854 / 0.75 = 1.0472 rad/s
A build up of charges on a sock from a dryer