1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
3 years ago
14

Solve for x in the inequality below. 4x-8<5x+4​

Mathematics
2 answers:
zvonat [6]3 years ago
6 0

Answer:

-12 < x

Step-by-step explanation:

4x-8<5x+4​

Subtract 4x from each side

4x-4x-8<5x-4x+4​

-8 < x+4

Subtract 4 from each side

-8-4 < x+4-4

-12 < x

Eddi Din [679]3 years ago
3 0

Answer:

Step-by-step explanation:

4x-8<5x+4

4x<5x+12

-x<12

flip sign

x > -12

You might be interested in
Rule 1: Add 1 starting from 0. Rule 2: Add 5 starting from 0. Complete the first 5 terms using the rules. How are the correspond
Strike441 [17]

Answer:

Its 3

Step-by-step explanation:

I searched it up.

8 0
3 years ago
(X^1/8 y^1/4 z^1/2)^8
adell [148]
(x^1/8 y^1/4 z^1/2)^8
(8 √x 4 √y √z^8)
(8 √x 8 √y^2 8 √z^4)^8
8 √xy^2z^4^8
Solution: xy^2 z^4
6 0
3 years ago
Compute the flux H F of F(x,y) = hxy, x − yi across the boundary of the square given by −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.
Softa [21]

Answer:

4i.

Step-by-step explanation:

To find the flux through the square, we use the divergence theorem for the flux. So Flux of F(x,y) = ∫∫divF(x,y).dA

F(x,y) = hxy,x - yi

div(F(x,y)) = dF(x,y)/dx + dF(x,y)dy = dhxy/dx + d(x - yi)/dy = hy - i

So, ∫∫divF(x,y).dA = ∫∫(hy - i).dA

= ∫∫(hy - i).dxdy

= ∫∫hydxdy - ∫∫idxdy

Since we are integrating along the boundary of the square given by −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, then

∫∫divF(x,y).dA = ∫₋₁¹∫₋₁¹hydxdy - ∫₋₁¹∫₋₁¹idxdy

= h∫₋₁¹{y²/2}¹₋₁dx - i∫₋₁¹[y]₋₁¹dx

= h∫₋₁¹{1²/2 - (-1)/2²}dx - i∫₋₁¹[1 - (-1)]dx

= h∫₋₁¹{1/2 - 1)/2}dx - i∫₋₁¹[1 + 1)]dx

= 0 - i∫₋₁¹2dx

= - 2i[x]₋₁¹

= 2i[1 - (-1)]

= 2i[1 + 1]

= 2i(2)

= 4i  

7 0
3 years ago
Hello help me with this question thanks in advance​
Ede4ka [16]

\bold{\huge{\green{\underline{ Solutions }}}}

<h3><u>Answer </u><u>1</u><u>1</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have</u><u>, </u>

\sf{HM = 5 cm }

  • <u>In </u><u>square </u><u>all </u><u>sides </u><u>of </u><u>squares </u><u>are </u><u>equal </u>

<u>The </u><u>perimeter </u><u>of </u><u>square </u>

\sf{ = 4 × side }

\sf{ = 4 × 5 }

\sf{ = 20 cm }

Thus, The perimeter of square is 20 cm

Hence, Option C is correct .

<h3><u>Answer </u><u>1</u><u>2</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>have</u><u>, </u>

\sf{MX  = 3.5 cm }

  • <u>In </u><u>square</u><u>,</u><u> </u><u>diagonals </u><u>are </u><u>equal </u><u>and </u><u>bisect </u><u>each </u><u>other </u><u>at </u><u>9</u><u>0</u><u>°</u>

<u>Here</u><u>, </u>

\sf{MX  = MT/2}

\sf{MT = 2 * 3.5 }

\sf{MT = 7 cm}

Thus, The MT is 7cm long

Hence, Option C is correct .

<h3><u>Answer </u><u>1</u><u>3</u><u> </u><u>:</u><u>-</u><u> </u></h3>

<u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>measure </u><u>of </u><u>Ang</u><u>l</u><u>e</u><u> </u><u>MAT</u>

  • <u>All </u><u>angles </u><u>of </u><u>square </u><u>are </u><u>9</u><u>0</u><u>°</u><u> </u><u>each </u>

<u>From </u><u>above </u>

\sf{\angle{MAT  = 90° }}

Thus, Angle MAT is 90°

Hence, Option B is correct .

<h3><u>Answer </u><u>1</u><u>4</u><u> </u><u>:</u><u>-</u></h3>

<u>We </u><u>know </u><u>that</u><u>, </u>

  • <u>All </u><u>the </u><u>angles </u><u>of </u><u>square </u><u>are </u><u>equal </u><u>and </u><u>9</u><u>0</u><u>°</u><u> </u><u>each </u>

<u>Therefore</u><u>, </u>

\sf{\angle{MHA  = }}{\sf{\angle{ MHT/2}}}

\sf{\angle{MHA = 90°/2}}

\sf{\angle {MHA = 45°}}

Thus, Angle MHA is 45°

Hence, Option A is correct

<h3><u>Answer </u><u>1</u><u>5</u><u> </u><u>:</u><u>-</u><u> </u></h3>

Refer the above attachment for solution

Hence, Option A is correct

<h3><u>Answer </u><u>1</u><u>6</u><u> </u><u>:</u><u>-</u><u> </u></h3>

Both a and b

  • <u>The </u><u>median </u><u>of </u><u>isosceles </u><u>trapezoid </u><u>is </u><u>parallel </u><u>to </u><u>the </u><u>base</u>
  • <u>The </u><u>diagonals </u><u>are </u><u>congruent </u>

Hence, Option C is correct

<h3><u>Answer </u><u>1</u><u>7</u><u> </u><u>:</u><u>-</u></h3>

In rhombus PALM,

  • <u>All </u><u>sides </u><u>and </u><u>opposite </u><u>angles </u><u>are </u><u>equal </u>

Let O be the midpoint of Rhombus PALM

<u>In </u><u>Δ</u><u>OLM</u><u>, </u><u>By </u><u>using </u><u>Angle </u><u>sum </u><u>property </u><u>:</u><u>-</u>

\sf{35° + 90° + }{\sf{\angle{ OLM = 180°}}}

\sf{\angle{OLM = 180° - 125°}}

\sf{\angle{ OLM = 55° }}

<u>Now</u><u>, </u>

\sf{\angle{OLM = }}{\sf{\angle{OLA}}}

  • <u>OL </u><u>is </u><u>the </u><u>bisector </u><u>of </u><u>diagonal </u><u>AM</u>

<u>Therefore</u><u>, </u>

\sf{\angle{ PLA = 55° }}

Thus, Angle PLA is 55° .

Hence, Option C is correct

8 0
3 years ago
Suzanne ran 334 miles in the morning and 412 ​ miles in the afternoon. How many kilometers did she run altogether? Assume 1 mile
morpeh [17]
1193.6 because 334+412=746 and 746*1.6=1193.6
8 0
3 years ago
Other questions:
  • Need help please the question is on the photo
    9·1 answer
  • If a rectangle has a length of 16 centimeters and a width of 20 centimeters, what is the area?
    15·1 answer
  • a rectangle has a length of 5 yards and a width of 3 yards. what is its perimeter? explain your answer
    14·2 answers
  • What does the word "Preludes " mean
    11·2 answers
  • The area of a parallelogram that has a base of 30 feet and a height of 20 feet.
    9·1 answer
  • Evaluate 7y - 3y for y=3
    12·2 answers
  • Suppose a city with population 100, 000 has been gromng at a rate of % per year. If this rate continues , find the population of
    6·1 answer
  • How many feet are in 189882 inches
    9·1 answer
  • For what value of x do the expressions 2x+3 and 3x-6 have the same value?
    7·1 answer
  • gabi and mina both okay a single player game where they try to survive as many rounds as possible without crashing their car int
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!