F(x)=
![\sqrt[3]{x+2}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bx%2B2%7D%20)
to solve for the inverse of a function you do 4 steps:
1. subsitute f(x) with y
2. switch y and x places
3. solve for y
4. subsitute y with f⁻¹(x)
so we have
f(x)=
![\sqrt[3]{x+2}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bx%2B2%7D%20)
subsitute f(x) with y
y=
![\sqrt[3]{x+2}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bx%2B2%7D%20)
switch x and y
x=
![\sqrt[3]{y+2}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7By%2B2%7D%20)
solve for y
x=
![\sqrt[3]{y+2}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7By%2B2%7D%20)
cube both sides

=y+2
subtract 2 from both sides

=y
subsitute y with f⁻¹(x)
f⁻¹(x)=

the answer is f⁻¹(x)=
Answer: ![3x^2y\sqrt[3]{y}\\\\](https://tex.z-dn.net/?f=3x%5E2y%5Csqrt%5B3%5D%7By%7D%5C%5C%5C%5C)
Work Shown:
![\sqrt[3]{27x^{6}y^{4}}\\\\\sqrt[3]{3^3x^{3+3}y^{3+1}}\\\\\sqrt[3]{3^3x^{3}*x^{3}*y^{3}*y^{1}}\\\\\sqrt[3]{3^3x^{2*3}*y^{3}*y}\\\\\sqrt[3]{\left(3x^2y\right)^3*y}\\\\\sqrt[3]{\left(3x^2y\right)^3}*\sqrt[3]{y}\\\\3x^2y\sqrt[3]{y}\\\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27x%5E%7B6%7Dy%5E%7B4%7D%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B3%5E3x%5E%7B3%2B3%7Dy%5E%7B3%2B1%7D%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B3%5E3x%5E%7B3%7D%2Ax%5E%7B3%7D%2Ay%5E%7B3%7D%2Ay%5E%7B1%7D%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B3%5E3x%5E%7B2%2A3%7D%2Ay%5E%7B3%7D%2Ay%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B%5Cleft%283x%5E2y%5Cright%29%5E3%2Ay%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B%5Cleft%283x%5E2y%5Cright%29%5E3%7D%2A%5Csqrt%5B3%5D%7By%7D%5C%5C%5C%5C3x%5E2y%5Csqrt%5B3%5D%7By%7D%5C%5C%5C%5C)
Explanation:
As the steps above show, the goal is to factor the expression under the root in terms of pulling out cubed terms. That way when we apply the cube root to them, the exponents cancel. We cannot factor the y term completely, so we have a bit of leftovers.
Answer:
1) -4 2)-3 3) -2 4) -1 5) 0
Step-by-step explanation:
Answer: X^2-x-1=y
Step-by-step explanation:
Multiply every number inside the parentheses
(X+3)(x-4)
X^2-4x+3x-1
Add all similar numbers and we get
X^2-X-1