The first step in the two-step process of making a solution is the breakdown of the solute source into Atomic particles
for a solution to break the solute must be dissociated and break into the atomic particles
so correct option is D
hope it helps
Remember this.
Ionic molecules has ionic bonds
Nonpolar molecules has dispersion (Van del Waals)
Polar molecules could either have hydrogen bonding or Dipole-Dipole. Hydrogen bonding is when you have F, O or N with H, every other polar molecule is dipole-dipole.
a. polar- dipole-dipole
b. polar- hydrogen bonding
c. nonpolar- dispersion
d. nonpolar- dispersion
e. polar- dipole-dipole
f. polar-dipole-dipole
g. nonpolar- dispersion
h. polar- hydrogen bonding.
Answer: 167 g
Explanation:
1) The depression of the freezing point of a solution is a colligative property ruled by this equation:
ΔTf = i × m × Kf
Where:
ΔTf is the decrease of the freezing point of the solvent due to the presence of the solute.
i is the Van't Hoof factor and is equal to the number of ions per each mole of solute. It is only valid for ionic compounds. Here the solute is not ionice, so you take i = 1
Kf is the molal freezing constant and is different for each solvent. For water it is 1.86 m/°C
2) Calculate the molality (m) of the solution
ΔTf = i × m × Kf ⇒ m = ΔTf / ( i × Kf) = 5.00°C / 1.86°C/m = 2.69 m
3) Calculate the number of moles from the molality definition
m = moles of solute / kg of solvent ⇒ moles of solute = m × kg of solvent
moles of solute = 2.69 m × 1.00 kg = 2.69 moles
4) Convert moles to grams using the molar mass
molar mass of C₂H₆O₂ = 62.07 g/mol
mass in grams = number of moles × molar mass = 2.69 moles × 62.07 g/mol = 166.97 g ≈ 167 g
Hey, you didn’t finish your answer!
Can you finish it so I can help you? Thanks!
Answer:
D- the grass population and hawk population would decrease. The snake population would increase..