Answer:
The mass of PbSO4 formed 15.163 gram
Explanation:
mole of Pb(NO₃)₂ = 1.25 x 0.05 = 0.0625
mole of Na₂SO₄ = 2 x 0.025 = 0.05
Pb(NO₃)₂ + Na₂SO₄ → PbSO₄ + 2 NaNO₃
( Mole/Stoichiometry )
= 0.0625 = 0.05
From (Mole/ Stoichiometry ) we can conclude that Na₂SO₄ is limiting reagent.
Mass of PbSO₄ precipitate = 0.05 x Molecular mass of PbSO₄
= 0.05 x 303.26 g
= 15.163 g
Answer:
0.85 Molar Na2O
Explanation:
Determine the moles of sodium oxide, Na2O, in 10 grams by dividing by the molar mass of Na2O (61.98 g/mole).
(10 g Na2O)/(61.98 g/mole) = 0.161 moles Na2O.
Molar is a measure of concentration. It is defined as moles/liter. A 1 M solution contains 1 mole of solute per liter of solvent. [200 ml water = 0.2 Liters water.]
In this case, we have 0.161 moles Na2O in 0.200 L of solvent.
(0.161 moles Na2O)/(0.200 L) = 0.85 Molar Na2O
<h2>Answer:</h2>
He is right that the energy of vaporization of 47 g of water s 106222 j.
<h3>Explanation:</h3>
Enthalpy of vaporization or heat of vaporization is the amount of energy which is used to transform one mole of liquid into gas.
In case of water it is 40.65 KJ/mol. And 18 g of water is equal to one mole.
It means for vaporizing 18 g, 40.65 kJ energy is needed.
So for energy 47 g of water = 47/18 * 40.65 = 106.1 KJ
Hence the student is right about the energy of vaporization of 47 g of water.
Explanation:
no lo c crack solo es para poder iniciar la sección y no c ingel Jaksjs