Answer:
Increase in temperature = 269.54 °C
Explanation:
We have equation for thermal expansion
ΔL = LαΔT
Change in length, ΔL = 0.08 m
Length, L = 56 m
Coefficient of thermal expansion, α = 5.3 x 10⁻⁶ °C⁻1
Change in temperature, ΔT = T - 253
Substituting
0.08 = 56 x 5.3 x 10⁻⁶ x (T - 253)
(T - 253) = 269.54
T = 522.54 °C
Increase in temperature = 269.54 °C
Answer:
due to condection of heat from pan in thermal energy according to 9th
Explanation:
According to Newton's Second Law of Motion, the net force experienced by the system is equal to the mass of the system in question times the acceleration in motion. In this case, the net force is the difference of gravitational force and the force experience by the motion of the airplane. This difference is already given to be 210 N.
Net force = ma
210 N = (73 kg)(a)
a = +2.92 m/s²
Thus, the acceleration of the airplane's motion is 2.92 m/s² to the positive direction which is upwards.
Answer:
225 N
Explanation:
"Below the horizontal" means he's pushing down at an angle.
Draw a free body diagram of the box. There are three forces: normal force N pushing up, weight force mg pulling down, and the applied force F at an angle θ.
Sum of forces in the y direction:
∑F = ma
N − mg − F sin θ = 0
N = F sin θ + mg
Plug in values:
N = (50 N) (sin 30°) + (20.0 kg) (10 m/s²)
N = 225 N