If you would like to solve the inequality 12 * p + 7 > 139, you can do this using the following steps:
12 * p + 7 > 139
12 * p > 139 - 7
12 * p > 132 /12
p > 132/12
p > 11
The correct result would be p > 11.
Because 12 + 3 is not equal to 16...
Question 2
------------------------------------------------------------------------------------------
Formula
------------------------------------------------------------------------------------------
Volume of the cylinder = πr²h
------------------------------------------------------------------------------------------
Find Radius
------------------------------------------------------------------------------------------
Radius = Diameter ÷ 2
Radius = 10 ÷ 2
Radius = 5 ft
------------------------------------------------------------------------------------------
Find Volume
------------------------------------------------------------------------------------------
Volume = πr²h
Volume = 3.14 x 5² x 21
Volume = 1648.5 ft³
------------------------------------------------------------------------------------------
Answer: Volume = 1648.5 ft³
------------------------------------------------------------------------------------------
Question 3
------------------------------------------------------------------------------------------
Formula
-----------------------------------------------------------------------------------------
Volume of a sphere = 4/3πr³
------------------------------------------------------------------------------------------
Find Volume
------------------------------------------------------------------------------------------
Volume = 4/3 x 3.14 x 20³
Volume = 33493.3 ft³ (nearest tenth)
------------------------------------------------------------------------------------------
Answer: Volume = 33493.3 ft³
------------------------------------------------------------------------------------------
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2
Answer:
385 yards
Step-by-step explanation:
From the information provided we can only assume that the two hits that Tasha performed were in a straight line and in the same direction. Otherwise we would need to know the direction and/or angle of the shots. Assuming they were straight, the shortest minimum distance between the tee area and the hole would be calculated by adding the distance of the two shots.
220 yards + 165 yards = 385 yards