So you first make 1 7/9 into 16/9
then you do 16/9 - 4/9 which equals to 12/9 then you simplify and get 4/3 then simplify again into 1 1/3
Answer:
1. 1343 years
2. 9 hours
3. 39 years
Step-by-step explanation:
1. Given, half-life of carbon = 5730 years.
∴ λ = 0.693/half-life of carbon = 0.693/5730 = 0.000121
If N₀ = 100 then N = 85
Formula:- N = N₀*e^(-λt)
∴ 85 = 100 * e^(-0.000121t)
∴㏑(-0.85)=-0.000121t
∴ t = 1343 years
2. Given half-life of aspirin = 12 hours
λ = 0.693/12 = 0.5775
Also N₀ = 100 then 70 will disintegrate and N = 30 will remain disintegrated.
∴ 70 = 100 *e^(-0.05775t)
0.70 = e^(-0.05775t)
㏑(0.70) = -0.05775t
∴ t = 9 hours
3. The population of the birds as as A=A₀*e^(kt)
Given that the population of birds fell from 1400 from 1000, We are asked how much time it will take for the population to drop below 100, let that be x years.
The population is 1400 when f = 0, And it is 1000 when f = 5
We can write the following equation :
1400 = 1000e^(5t).
∴1400/1000 = e^(5k)
∴ k = ㏑(1.4)/5
We need to find x such that 1400/100 = e^(xk)
14 = e^(xk)
∴ x = 39 years
This is not true. The infinite series

converges if and only if the sequence of its partial sums converges. The

-th partial sum is

but clearly this diverges as

gets arbitrarily large.
Answer:
Distance between P and R is 40.15 km.
Step-by-step explanation:
From the picture attached,
Petrol kiosk P is 12 km due North of another petrol kiosk Q.
Bearing of a police station R is 135° from P and 120° from Q.
m∠QPR = 180° - 135° = 45°
m∠PQR = 120°
m∠PRQ = 180° - (m∠QPR +m∠PQR)
= 180° - (45° + 120°)
= 180° - 165°
= 15°
Now we apply sine rule in ΔPQR to measure the distance between P and R.



PR = 
PR = 40.15 km
Therefore, distance between P and R is 40.15 km.