Answer:
a box moving along a conveyor belt possesses kinetic energy.
Lightning produced during a storm gives electrical energy.
a piece of fruit hanging from a tree possesses gravitational potential energy.
Sand on a beach feel warm to touch because the sand possesses thermal energy.
Radio waves transmitted from a tower (radiant energy).
Explanation:
Answer:
The answer is explained below.
Explanation:
The energy emitted during the de-excitation of an electron from a higher energy level to a lower energy level is directly proportional to the frequency of the emitted light.
Here, the total sum of the energies of 2 frequencies of light emitted in different stages is equal to the energy of a single frequency of light during the de-excitation of fourth level to ground level directly.
Hence the total sum of of the frequencies of 2 lights emitted in different stages is equal to the frequency of single frequency of light emitted during the de-excitation from fourth level to ground level directly.
The some of the energies of 2 frequencies emitted by one electron is equal to the energy of a single frequency when electron jumps directly.
Density can be calculated using the following rule:
density = mass / volume
Since the density is given as 8 gm/cm^3 and the mass is given as 600 grams, therefore, all we need to do is substitute in the equation to get the value of the volume as follows:
8 = 600 / volume
volume = 600 / 8 = 75 cm^3
Answer:
The Roche limit for the Moon orbiting the Earth is 2.86 times radius of Earth
Explanation:
The nearest distance between the planet and its satellite at where the planets gravitational pull does not torn apart the planets satellite is known as Roche limit.
The relation to determine Roche limit is:
....(1)
Here
is radius of planet and
are density of planet and moon respectively.
According to the problem,
Density of Earth,
= 5.5 g/cm³
Density of Moon,
= 3.34 g/cm³
Consider
be the radius of the Earth.
Substitute the suitable values in the equation (1).
![Roche\ limit=2.423\times R_{E}\times\sqrt[3]{\frac{5.5 }{3.34 } }](https://tex.z-dn.net/?f=Roche%5C%20limit%3D2.423%5Ctimes%20R_%7BE%7D%5Ctimes%5Csqrt%5B3%5D%7B%5Cfrac%7B5.5%20%7D%7B3.34%20%7D%20%7D)
