Answer:
Explanation:
Since the equation for the illumination of an object, i.e. the brightness of the light, is <em>inversely proportional to the square of the distance from the light source</em>, the form of the function is:
Where x is the distance between the object and the light force, k is the constant of proportionality, and f(x) is the brightness.
Then, if you move halfway to the lamp the new distance is x/2 and the new brightness (call if F) is :

Then, you have found that the light is 4 times as bright as it originally was.
Answer:
Answer:
4 ms
Explanation:
initial velocity, u = 75 m/s
final velocity, v = 0
distance, s = 15 cm = 0.15 m
Let the acceleration is a and the time taken is t.
Use third equation of motion
v² = u² + 2 a s
0 = 75 x 75 - 2 a x 0.15
a = - 18750 m/s^2
Use first equation of motion
v = u + at
0 = 75 - 18750 x t
t = 4 x 10^-3 s
t = 4 ms
thus, the time taken is 4 ms.
Explanation:
Answer:
model 3
Explanation:
Boron with atomic number 5 will have 3 valence electrons
Answer:
Explanation:
Work = Force times displacement. Therefore,
W = 3150(75.5) so
W = 238000 N*m
<span>If there isn't any force then the normal contact force will be
N=m*g=7.5*9.81=73.58N
which is 73.58-23=50.58N less
so, there the person must pull at 23 degree upward
break down the tension in two components, vertical and horizontal.
vertical tension= 50.58=T*sin23
T=50.58/sin23=129.45N</span>