what?????????????!!!!!!!!!!!!!!
There is an indirect relationship between length and frequency. The longer the length the pipe has, the higher frequency it is. The shorter the length the pipe has, the lower frequency it is.
<u>Explanation:</u>
The four properties of the string that affect its frequency are length, diameter, tension, and density. These properties are described below: When the length of a string is changed, it will vibrate with a different frequency. Shorter strings have higher frequency and therefore higher pitch.
The longer the tube is the lower the pitch of the note that it can emit. When a tube is heated it expands and so is longer! As the gas in the tube gets warmer the molecules move faster, that means they can carry the vibrations of the sound wave more rapidly and so the pitch goes up.
Answer:
Balanced forces are responsible for unchanging motion. Balanced forces are forces where the effect of one force is cancelled out by another. A tug of war, where each team is pulling equally on the rope, is an example of balanced forces. The forces exerted on the rope are equal in size and opposite in direction.
Explanation:
Answer:
in 1 second 3m, in 2 seconds 6m, in 3 seconds 9m.
Explanation:
distance=speed × time
Answer:
18 N
Explanation:
Force can be found using the following formula.
f= m*a
where m is the mass and a is the acceleration.
We know the desk has a mass of 36 kilograms. We also know that its acceleration is 0.5 m/s^2.
m= 36 kg
a= 0.5 m/s^2
Substitute these values into the formula.
f= 36 kg * 0.5 m/s^2
Multiply 36 and 0.5
f=18 kg m/s^2
1 kg m/s^2 is equivalent to 1 Newton, or N.
f= 18 Newtons
The force being applied is 18 kg m/s^2, Newtons, or N