1427 = (F) (+ F + 60) (2F - 50) (+ 3F)
<em>Each pair of brackets represents one of the classes - F meaning Freshmen Class. It has been split into brackets for demonstrational purposes - nothing is being multiplied.</em>
F is an unknown number and each other class size is based off of that so we put it in algebraic terms in order to work it out.
1 - Freshmen Class
2 - Sophomore Class (Freshmen Class + 60 more students)
3 - Junior Class ( Twice the size of the Freshmen Class - 50 students)
4 - Senior Class (Three times the size of the Freshmen Class)
All this can be simplified to 7F + 10 = 1427
1427 - 10 = 1417
1417/7 = 202.428....
Is there a mistake in the question?
Following the question with 202 as the answer - the number 1424 is reached
If increased to 203 - 1431 is reached.
The answer shouldn't include half a person.
Answer:
Step-by-step explanation:
Step 1: Write the equation in the correct form. In this case, we need to set the equation equal to zero with the terms written in descending order.
Step 2: Use a factoring strategies to factor the problem.
Step 3: Use the Zero Product Property and set each factor containing a variable equal to zero.
No idea what this is, sorry
XY - X + 2Y -2 =X(Y-1) + 2(Y-1) = 2X(Y-1)
Answer:
∠RPQ = 27
Step-by-step explanation:
In ΔSRQ,
∠R = 90
∠SQR = 36°
∠R + ∠SQR + ∠RSQ = 180 {Angle sum property of triangle}
90 + 36 + ∠RSQ = 180
126 + ∠RSQ = 180
∠RSQ = 180 - 126
∠RSQ = 54°
∠PSQ +∠RSQ = 180 {Linear pair}
∠PSQ + 54 = 180
∠PSQ = 180 - 54
∠PSQ = 126
In ΔPSQ,
SQ = PS ,
So, ∠SQP = ∠SPQ {Angles opposite to equal sides are equal}
∠SQP = ∠SPQ =x
∠PSQ + x +x = 180 {Angle sum property of triangle}
126 + 2x = 180
2x = 180 - 126
2x = 54
x = 54/2
x = 27
∠RPQ = 27°