Like wat is it like i need was you need to show me your Question so i know what you talking about
Answer and workings in the attachment below. Also, do me one big favour. Let me know if it's the answer your teacher or text book ends up giving you. That would give me some satisfaction.
Answer: 80%
Answer:
- The sequence of transformations that maps triangle XYZ onto triangle X"Y"Z" is <u>translation 5 units to the left, followed by translation 1 unit down, and relfection accross the x-axis</u>.
Explanation:
By inspection (watching the figure), you can tell that to transform the triangle XY onto triangle X"Y"Z", you must slide the former 5 units to the left, 1 unit down, and, finally, reflect it across the x-axys.
You can check that analitically
Departing from the triangle: XYZ
- <u>Translation 5 units to the left</u>: (x,y) → (x - 5, y)
- Vertex X: (-6,2) → (-6 - 5, 2) = (-11,2)
- Vertex Y: (-4, 7) → (-4 - 5, 7) = (-9,7)
- Vertex Z: (-2, 2) → (-2 -5, 2) = (-7, 2)
- <u>Translation 1 unit down</u>: (x,y) → (x, y-1)
- (-11,2) → (-11, 2 - 1) = (-11, 1)
- (-9,7) → (-9, 7 - 1) = (-9, 6)
- (-7, 2) → (-7, 2 - 1) = (-7, 1)
- <u>Reflextion accross the x-axis</u>: (x,y) → (x, -y)
- (-11, 1) → (-11, -1), which are the coordinates of vertex X"
- (-9, 6) → (-9, -6), which are the coordinates of vertex Y""
- (-7, 1) → (-7, -1), which are the coordinates of vertex Z"
Thus, in conclusion, it is proved that the sequence of transformations that maps triangle XYZ onto triangle X"Y"Z" is translation 5 units to the left, followed by translation 1 unit down, and relfection accross the x-axis.
Answer:
daw
Step-by-step explanation: