Answer:
No.
Step-by-step explanation:
If n=3 the only thing you get is 6, which is not more than 6.
Answer:
h(2)+g(2) = -3
Step-by-step explanation:

Replace the variable (t) with (
2) in the expression.
h (2) = 3 - 5
Replace the variable (t) with (
2) in the expression.
g(2) = 2(2) -5
Replace the function designators in h(2) +g(2) with the actual functions.
h(t) = 3 - 5 +2 (2) ← plug h(2) into 2(t)
Remove parentheses.
3 - 5 + 2(2)
Multiply 2 by 2
3 - 5 + 4 - 5
Subtract 5 from 3
.
-2 + 4 - 5
Add -2 and 4
2 - 5
Subtract 5 from 2
-3
Answer:
(-3, 4)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Terms/Coefficients
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -x + 1
2x + 3y = 6
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 2x + 3(-x + 1) = 6
- Distribute 3: 2x - 3x + 3 = 6
- Combine like terms: -x + 3 = 6
- Isolate <em>x</em> terms: -x = 3
- Isolate <em>x</em>: x = -3
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define equation: y = -x + 1
- Substitute in <em>x</em>: y = -(-3) + 1
- Simplify: y = 3 + 1
- Add: y = 4
Answer:
A net with a square base and 4 triangular side
Step-by-step explanation: