[CO] = 1 mol / 2L = 0.5 M
[
According to the equation:
and by using the ICE table:
CO(g) + H2O(g) ↔ CO2(g) + H2(g)
initial 0.5 0.5 0 0
change -X -X +X +X
Equ (0.5-X) (0.5-X) X X
when Kc = X^2 * (0.5-X)^2
by substitution:
1.845 = X^2 * (0.5-X)^2 by solving for X
∴X = 0.26
∴ [CO2] = X = 0.26
Answer:
329.7%
Explanation:
Percent Yield = Actual Yield/ Theoretical Yield x 100%
Percent Yield = 105.5g/32 x 100% = 329.69 ≈ 329.7 %
The law of definite proportions agrees with Dalton atomic theory.
What is Dalton atomic theory?
It state that all matters is made of very tiny particles called atom. atoms are individual particles which can not be created or be destroyed in a chemical reactions. Atoms of given elements are identical in mass and chemical properties. Atoms of
different elements have different masses and chemical properties.
The law of definite proportions also known as proust's law ,state that a chemical compound contain the same proportion of elements by mass.this law is one of the stoichiometry .
Thus ,
This is the reason why it is agrees with dalton atomic theory.
To know more about Dalton atomic theory click-
brainly.com/question/13157325
#SPJ1
This is true otherwise cancer patients would have a hole in them and so would the hulk ;)
Consider the isomerization of butane with equilibrium constant is 2.5 .The system is originally at equilibrium with :
[butane]=1.0 M , [isobutane]=2.5 M
If 0.50 mol/L of butane is added to the original equilibrium mixture and the system shifts to a new equilibrium position, what is the equilibrium concentration of each gas?
Answer:
The equilibrium concentration of each gas:
[Butane] = 1.14 M
[isobutane] = 2.86 M
Explanation:
Butane ⇄ Isobutane
At equilibrium
1.0 M 2.5 M
After addition of 0.50 M of butane:
(1.0 + 0.50) M -
After equilibrium reestablishes:
(1.50-x)M (2.5+x)
The equilibrium expression will wriiten as:
![K_c=\frac{[Isobutane]}{[Butane]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BIsobutane%5D%7D%7B%5BButane%5D%7D)

x = 0.36 M
The equilibrium concentration of each gas:
[Butane]= (1.50-x) = 1.50 M - 0.36M = 1.14 M
[isobutane]= (2.5+x) = 2.50 M + 0.36 M = 2.86 M