Answer: 2 lbs of cherries
Cherries = $5 per pound
Oranges = $2 per pound
Total Cost = $18
Total weight = 6 lb
------------------------------------
Define x and y
------------------------------------
Let x be the number of lb of cherries
Let y be the number of lb of oranges
------------------------------------
Construct equations
------------------------------------
x + y = 6 ---------------------------- (1)
5x + 2y = 18 ---------------------------- (2)
------------------------------------------------------------------------
Solve x and y
------------------------------------------------------------------------
From equation (1):
x + y = 6
x = 6 - y
------------------------------------------------------------------------
Substitute x = 6 - y into equation 2
------------------------------------------------------------------------
5x + 2y = 18
5 (6 - y) + 2y = 18
30 - 5y + 2y = 18
3y = 30 - 18
3y = 12
y = 4
------------------------------------------------------------------------
Substitute y = 4 into equation (1)
------------------------------------------------------------------------
x + y = 6
x + 4 = 6
x = 2
------------------------------------------------------------------------
Find the weight of cherries and oranges
------------------------------------------------------------------------
Cherry = x = 2 lb
Oranges = y = 4 lbs
------------------------------------------------------------------------
Answer: Alex bought 2 lb of cherries
------------------------------------------------------------------------
Answer:
i = 77.5°
k = 77.5°
j = 102.5°
h = 155°
Step-by-step explanation:
Since we have an isosceles triangle, we know that ∠i and ∠k are equal. So,
180 - 25 = 2x
155 = 2x
x = 77.5
So m∠i = m∠k = 77.5°
To find m∠j, we use Supplementary Angles:
180 - 77.5 = 102.5°
To find m∠h, we also use Supplementary Angles:
180 - 25 = 155°
u don't multiple u divide 3 and u do the same for 9 divide it by 3
2+5-71
7-71
-64
answer is -64
Earlier snow depth = 2 feet
later snow depth = 1.6 feet
change
2 - 1.6
0.4 feet
percentage change
(0.4 / 2) * 100
20 %