Answer:
- x = ±√3, and they are actual solutions
- x = 3, but it is an extraneous solution
Step-by-step explanation:
The method often recommended for solving an equation of this sort is to multiply by the product of the denominators, then solve the resulting polynomial equation. When you do that, you get ...
... x^2(6x -18) = (2x -6)(9)
... 6x^2(x -3) -18(x -3) = 0
...6(x -3)(x^2 -3) = 0
... x = 3, x = ±√3
_____
Alternatively, you can subtract the right side of the equation and collect terms to get ...
... x^2/(2(x -3)) - 9/(6(x -3)) = 0
... (1/2)(x^2 -3)/(x -3) = 0
Here, the solution will be values of x that make the numerator zero:
... x = ±√3
_____
So, the actual solutions are x = ±3, and x = 3 is an extraneous solution. The value x=3 is actually excluded from the domain of the original equation, because the equation is undefined at that point.
_____
<em>Comment on the graph</em>
For the graph, we have rewritten the equation so it is of the form f(x)=0. The graphing program is able to highlight zero crossings, so this is a convenient form. When the equation is multiplied as described above, the resulting cubic has an extra zero-crossing at x=3 (blue curve). This is the extraneous solution.
A basic unit of a chemical element
If they saved £29 all together, and if each of them saved the same amount,
then each saved £29/4 = £7.25 or £7 and 25p.
(Before decimalization in 1971, £7.25 would have been £7 and 5s .)
Answer:
the 2nd one
Step-by-step explanation: