If I am correct the answer would be iron and nickel.
I think the correct answer would be false. The atomic mass of chlorine does not represent the mass of the most common naturally occurring isotope of chlorine. The atomic mass of any compound is the average of the atomic masses of the naturally occurring isotopes of an element. <span />
Answer:
Explanation:
Sodium:
Na₁₁ = 1s² 2s² 2p⁶ 3s¹
Iron:
Fe₂₆= 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁶
Bromine:
Br₃₅ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁵
Barium:
Ba₅₆ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s²
Cobalt:
Co₂₇ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁷
Silver:
Ag₄₇ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹ 4d¹⁰
Tellurium:
Te₅₂= 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁴
Radium:
Ra₈₈ = 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d¹⁰ 6p⁶ 7s²
Answer:
Answer is in the explanation.
Explanation:
Before the equivalence point, the pH of the solution of HCl that is titrated with NaOH has a pH <<< 7. When you are adding more NaOH nearing, thus, to the equivalence point the change in pH occurs quickly, and, with 1 drop of excess of NaOH after equivalence, the pH of the solution change to a pH >>> 7
That means the volume added at pH 5 or pH 9 is, almost, the same doing the indicator work just as well as an indicator with change color at pH 7