The answer would be 20% (B)
The number of moles of silver oxide (I) needed to produce 4 moles of silver is 2 moles
<h3>Stoichiometry </h3>
From the question, we are to determine the number of moles of silver oxide (I) needed to produce 4 moles of silver
First, we will write the balaced chemical equation for the decomposition of silver oxide (I)
2Ag₂O(s) → 4Ag(s) + O₂(g)
This means, 2 moles of silver oxide (I) [Ag₂O] decomposes to give 4 moles of <u>silver </u>and 1 mole of oxygen gas.
From the <em>balanced chemical equation</em>, it is easy to deduce the number of moles of silver oxide (I) that would give 4 moles of silver.
Hence, the number of moles of silver oxide (I) needed to produce 4 moles of silver is 2 moles
Learn more on Stoichiometry here: brainly.com/question/18834543
It's 3. There are two Cl in the reactants and 3 in the products, and they need to be balanced/equal. Only way to do that is add three on the left side, which will give you 6 Cl (3×2Cl) and then 2 on the other side, which will also give you 6 Cl (2×3Cl)
Answer:
2.15 mg of uranium-238 decays
Explanation:
For decay of radioactive nuclide-

where N is amount of radioactive nuclide after t time,
is initial amount of radioactive nuclide and
is half life of radioactive nuclide
Here
,
and 
So,
so, N = 2.446 mg
mass of uranium-238 decays = (4.60-2.446) mg = 2.15 mg
The mass of an element listed in the Periodic Table is the weighted average of all its naturally occurring isotopes.
Naturally occurring carbon is about
99 % carbon-12 (12.000 u) + 1 % carbon-13 (13.003 u).
That extra carbon-13 makes the <em>average atomic mass</em> greater than 12.000 u.