<span>You have to use a Newman projection to make sure that the H on C#2 is anti-coplanar with the Br on C#1. (Those are the two things that are going to be eliminated to make the alkene.)
My Newman projection looks like this when it's in the right configuration:
Front carbon (C#2) has ethyl group straight up, H down/left, and CH3 down/right
Back carbon (C#1) has H straight down, Ph up/left, and Br up/right.
Then when you eliminate the H from C#2 and the Br from C#1, you will have Ph and the ethyl group on the same side of the molecule, and you'll have the remaining H and CH3 on the same side of the molecule.
This is going to give you (Z)-2-methyl-1-phenyl-1-butene.</span>
Almost all hydrocarbon 'burn' reactions involve oxygen; it's by far the most reactive substance in air.
<span>Hydrocarbon combustions always involve </span>
<span>[some hydrocarbon] + oxygen --> carbon dioxide + steam. </span>
C6H6(l) + O2 (g)--> CO2 (g)+ H2O (g)
<span>Balance carbon, six on each side: </span>
C6H6(l) + O2 (g)--> 6CO2 (g)+ H2O (g)
<span>Balance hydrogen, six on each side: </span>
C6H6(l) + O2 (g)--> 6CO2(g) + 3H2O (g)
<span>Now, we have fifteen oxygens on the right and O2 on the left. </span>
<span>Two ways to deal with that. We can use a fraction: </span>
C6H6 (l)+ (15/2)O2 (g)--> 6CO2 (g)+ 3H2O (g)
<span>Or, if you prefer to have whole number coefficients, double everything </span>
<span>to get rid of the fraction: </span>
2C6H6 (l)+ 15O2 (g)--> 12CO2 (g)+ 6H2O (g)
<span>With the SATP states thrown in... </span>
C6H6(l) + (15/2)O2(g) --> 6CO2(g) + 3H2O(g)
Answer:
2Cl+2e -->2Cl^-
Explanation:
reduction is the gain of electrons and this is the only option which fits the definition.
Regulates the volume and pH of the internal environment. The human excretory system maintains homeostasis by removing metabolic waste such as water, salt and metabolite concentrations in the blood.
Answer:
Density =1.27g/cm
Explanation:
Density is the mass per volume of a substance.
That is
Density = mass/volume
Given that mass = 14g
Volume = 11cm³
Therefore
Density = 14/11 g/cm³
Density =1.27g/cm³
I hope this was helpful, please mark as brainliest