The height of a rectangular pyramid is 30 cm.
volume of rectangular pyramid = (length x width x height) / 3
Given:
Volume = 900 cm³
Length = 10 cm
Width = 9 cm
Height = ?
V = lwh/3
900 cm³ = (10cm * 9cm * h)/3
900 cm³ * 3 = (90cm² * h)/3 * 3
2700 cm³ = 90cm² * h
2700 cm³/90cm² = 90cm² * h/90 cm²
30 cm = h
to check:
900 cm³ = (10 cm * 9 cm * 30 cm)/3
900 cm³ = 2700 cm³/3
900 cm³ = 900 cm³
There is a 1/3 chance both will land on 6.
To find the slope you use the equation:
m = (y₂-y₁) ÷ (x₂-x₁)
You plug in the two points into this equation to find m (m is the slope)
m = (1 - 0) ÷ (0 - 2)
m = 1 ÷ (-2)
m = - 1/2
Next you use this equation:
y = mx + b
Because you know m you plug it in.
y = -1/2x + b
Now you need to find b. To do so you plug in either of the points into this equation(you come out with the same answer for b)
y = -1/2x + b
1 = -1/2(0) + b
1 = b
Finally you plug in b and you get your new equation.
y = -1/2x + 1
3(the fee per hour) * 5(the number of hours) = 15
15 + 10(the initial fee) = 25
The answer is true.
First of all we will understand the question!!
<em>The</em><em> </em><em>question</em><em> </em><em>is</em><em> </em><em>saying</em><em> </em><em>that</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>given</em><em> </em><em>a</em><em> </em><em>function</em><em> </em><em>and</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>which</em><em> </em><em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>maximum</em><em> </em><em>profit</em><em>.</em><em>.</em><em>.</em><em> </em><em>Lets</em><em> </em><em>solve</em><em> </em><em>it</em><em> </em><em>by</em><em> </em><em>finding</em><em> </em><em>the</em><em> </em><em>extrema</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>vertex</em>
<em>
</em>
- <u>Identify the coefficients a and b of the quadratic function</u>
<em>
</em>
- <u>Since a<0, the function has the maximum value at x, calculated by substituting a and b into x=-b/2a</u>
<u>
</u>
- <u>Solve</u><u> </u><u>the</u><u> </u><u>equation</u><u> </u><u>for</u><u> </u><u>x</u><u> </u>
<u>
</u>
- <u>The maximum of the quadratic function is at </u><u>x</u><u>=</u><u>3</u>