Answer:
Step-by-step explanation:
<u>In right triangle sum of two angles is 90°</u>
- 4x + x = 90°
- 5x = 90°
- x = 90°/5
- x = 18°
<u>Angle y is exterior angle and equals non-adjacent interior angles</u>
- y = 4x + 95° =
- 4*18° + 95° =
- 72° + 95° =
- 167°
In this question, the Poisson distribution is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
Parameter of 5.2 per square yard:
This means that
, in which r is the radius.
How large should the radius R of a circular sampling region be taken so that the probability of finding at least one in the region equals 0.99?
We want:

Thus:

We have that:


Then





Thus, the radius should be of at least 0.89.
Another example of a Poisson distribution is found at brainly.com/question/24098004
Answer:
5x+ 4
Step-by-step explanation:
First, put all of the x variables together. So 3x+4x=7x
7x + 4 -2x Since the 2x is negative you can subtract it from 7x and get 5x.
you can not add the four to the 5x because it does not have a matching variable.
So, you have: 5x+ 4
Answer:
Solve for be is 56
Step-by-step explanation:
That the answer
Answer:
B) 4√2
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Parametric Differentiation
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Arc Length Formula [Parametric]: ![\displaystyle AL = \int\limits^b_a {\sqrt{[x'(t)]^2 + [y(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Csqrt%7B%5Bx%27%28t%29%5D%5E2%20%2B%20%5By%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

Interval [0, π]
<u>Step 2: Find Arc Length</u>
- [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]:

- Substitute in variables [Arc Length Formula - Parametric]:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{[1 + sin(t)]^2 + [-cos(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B%5B1%20%2B%20sin%28t%29%5D%5E2%20%2B%20%5B-cos%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
- [Integrand] Simplify:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx)
- [Integral] Evaluate:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx = 4\sqrt{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx%20%3D%204%5Csqrt%7B2%7D)
Topic: AP Calculus BC (Calculus I + II)
Unit: Parametric Integration
Book: College Calculus 10e