Answer:
h = 16.9 m
Explanation:
When a ball is thrown upward, its velocity gradually decreases, until it stops for a moment, when it reaches the maximum height, while its height increases. Thus, the law conservation of energy states in this case, that:
Kinetic Energy Lost by Ball = Potential Energy Gained by Ball
(0.5)m(Vf² - Vi²) = mgh
h = (0.5)(Vf² - Vi²)/g
where,
Vf = Final Speed of Ball = 0 m/s (Since, ball stops for a moment at highest point)
Vi = Initial Speed of Ball = 18.2 m/s
g = acceleration due to gravity = - 9.8 m/s² ( negative for upward motion)
h = maximum height the ball can reach = ?
Therefore, using values in the equation, we get:
h = (0.5)[(0 m/s)² - (18.2 m/s)²]/(-9.8 m/s²)
<u>h = 16.9 m</u>
Answer:
45°.
It is a property of the parabolas.. When the angle between a parabola and the x-axis is 45° the range is maximum.
It would be towards your side. Right hand thumb rule
Answer:
Wavelength can always be found by measuring the distance between any two corresponding points on adjacent waves. In the case of a longitudinal wave, a wavelength measurement is made by measuring the distance from a compression to the next compression or from a rarefaction to the next rarefaction.
Explanation:
Answer: 0.9264 kg
Explanation: [I'll use "cc" for cubic centimeter, instead of cm^3.
The volume is 6cm*4cm*2cm = 48 cm^3 (cc).
Density of Au is 19.3 g/cc
Mass of gold = (48 cc)*(9.3 g/cc) = 926.4 grams Au
1 kg = 1,000 g
(926.4 grams Au)*(1 kg/1,000 g) = 0.9264 kg, 0.93 kg to 2 sig figs
At gold's current price of $57,500/kg, this bar is worth $53,268. Keep it hidden from your lab partner (and instructor).