The magnification of the ornament is 0.25
To calculate the magnification of the ornament, first, we need to find the image distance.
Formula:
- 1/f = u⁻¹+v⁻¹.................... Equation 1
Where:
- f = Focal length of the ornament
- u = image distance
- v = object distance.
make u the subject of the equation
- u = fv/(f+v)................ Equation 2
From the question,
Given:
Substitute these values into equation 2
- u = (12×4)/(12+4)
- u = 48/16
- u = 3 cm.
Finally, to get the magnification of the ornament, we use the formula below.
- M = u/v.................. Equation 3
Where
- M = magnification of the ornament.
Substitute these values above into equation 3
Hence, The magnification of the ornament is 0.25
Answer:
T = 2010 N
Explanation:
m = mass of the uniform beam = 150 kg
Force of gravity acting on the beam at its center is given as
W = mg
W = 150 x 9.8
W = 1470 N
T = Tension force in the wire
θ = angle made by the wire with the horizontal = 47° deg
L = length of the beam
From the figure,
AC = L
BC = L/2
From the figure, using equilibrium of torque about point C
T (AC) Sin47 = W (BC)
T L Sin47 = W (L/2)
T Sin47 = W/2
T Sin47 = 1470
T = 2010 N
True is the anwser to your question
Hope this helps
The amplitude of a sound<span> wave </span>determines<span> its </span>loudness<span> or volume. A larger amplitude means a louder </span>sound<span>, and a smaller amplitude means a softer </span><span>sound</span>
Answer:
Power generate by generator = 265 W (Approx.)
Explanation:
Given:
Mass of student = 62 kg
Height of stairs = 3.4 meter
Time taken = 7 second
Find:
Power generate by generator
Computation:
Power = Force x [Distance / Time]
Power = [Mass x gravitational acceleration] x [Distance / Time]
Power = [62 x 9.8][3.4/7]
Power = [607.6][3.4/7]
Power = 265.12
Power generate by generator = 265.12
Power generate by generator = 265 W (Approx.)