Answer:
t_{out} =
t_{in}, t_{out} = 
Explanation:
This in a relative velocity exercise in one dimension,
let's start with the swimmer going downstream
its speed is

The subscripts are s for the swimmer, r for the river and g for the Earth
with the velocity constant we can use the relations of uniform motion
= D / 
D = v_{sg1} t_{out}
now let's analyze when the swimmer turns around and returns to the starting point

= D / 
D = v_{sg 2} t_{in}
with the distance is the same we can equalize

t_{out} = t_{in}
t_{out} =
t_{in}
This must be the answer since the return time is known. If you want to delete this time
t_{in}= D / 
we substitute
t_{out} = \frac{v_s - v_r}{v_s+v_r} ()
t_{out} = 
Answer:
brighter
Explanation:
the more light bulbs you add to a series of circuits, the brighter the room will be.
Answer: The average speed is 27,24 mph (exactly 1008/37 mph)
Explanation:
This is solved using a three rule: We know the speeds and the distances, what we can obtain from it is the time used. It is done like this:
1h--->18mi
X ---->20 mi, then X=20mi*1h/18mi= 10/9 h=1,111 h
1h--->56mi
X ---->20 mi, then X=20mi*1h/56mi= 5/14 h=0,35714 h
Then the average speed is calculated by taking into account that it was traveled 40mi and the time used was 185/126 h=1,468 h and since speed is distance over time we get the answer. Average speed= 40mi/(185/126 h)=1008/37 mph=27,24 mph.
Answer:
5.82812 rad/s
Explanation:
L = Length of meter stick = 1 m = 100 cm
= The center of mass of the stick = 
= Angular velocity
Moment of inertia of the system is given by

As the energy in the system is conserved

The maximum angular velocity is 5.82812 rad/s
Displacement is usually given to you as it is, but you can also get displacement through velocity by Δd= Δv*t, where <span>Δv is the change in velocity and t is the change in time.
</span>