37 and 1/2 could mean:
37+ (1/2)
37 times 1/2
37+1/2=37 and 1/2 or 37.5
37 times 1/2=37/2=18 and 1/2=18.5
Answer:
6.25 feet.
Step-by-step explanation:
Let L be the length of the ramp in feet.
We have been given that steel loading ramps are used to load a lawn mower onto a truck bed 37.5 inches above the ground. The ramp make a 30° angle with the ground.
We can see from our attachment that ramp and truck bed forms a right triangle with ground. The truck bed is opposite side and length of ramp is hypotenuse of our given angle.
Since we know that Sine relates the opposite and hypotenuse of a right triangle, so we will use Sine to solve for L.
Upon substituting our given values in above formula we will get,
Therefore, the length of the ramp is 75 inches.
Let us convert the length of ramp in feet.
1 feet = 12 inches.
Therefore, the length of the ramp is 6.25 feet.
Answer:
1
Step-by-step explanation:
(27 mi/hr) x (1 hr / 60 min) = (27/60) (mi/min) = 0.45 mile/minute
Using the same kind of calculation, we can see
that the world record times for other distances
correspond to:
200 meters 23.31 mph
400 meters 20.72 mph
800 meters 17.73 mph
1000 meters 16.95 mph
1500 meters 16.29 mph
1 mile (1,609 meters) 16.13 mph
2,000 meters 15.71 mph
10,000 meters 14.18 mph
30,000 meters 12.89 mph
Marathon (42,195 meters) 13.10 mph
Except for that one figure at the end, for the marathon,
which I can't explain yet and I'll need to investigate further,
it's pretty obvious that a human being, whether running for
his life or for a gold medal, can't keep up the pace indefinitely.
Point B on the ground is 5 cm from point E at the entrance to Ollie's house.
Ollie is at a distance of 2.45 m from the entrance to his house when he first activates the sensor.
The complete question is as follows:
Ollie has installed security lights on the side of his house that is activated by a sensor. The sensor is located at point C directly above point D. The area covered by the sensor is shown by the shaded region enclosed by triangle ABC. The distance from A to B is 4.5 m, and the distance from B to C is 6m. Angle ACB is 15°.
The objective of this information is:
- To find angle CAB and;
- Find the distance Ollie is from the entrance to his house when he first activates the sensor.
The diagrammatic representation of the information given is shown in the image attached below.
Using cosine rule to determine angle CAB, we have:

Here:





∠CAB = Sin⁻¹ (0.3451)
∠CAB = 20.19⁰
From the diagram attached;
- assuming we have an imaginary position at the base of Ollie Standing point called point F when Ollie first activates the sensor;
Then, we can say:
∠CBD = ∠GBF
∠GBF = (CAB + ACB)
(because the exterior angles of a Δ is the sum of the two interior angles.
∠GBF = 15° + 20.19°
∠GBF = 35.19°
Using the trigonometric function for the tangent of an angle.




BF = 2.55 m
Finally, the distance of Ollie║FE║ from the entrance of his bouse is:
= 5 - 2.55 m
= 2.45 m
Therefore, we can conclude that Ollie is at a distance of 2.45 m from the entrance to his house when he first activates the sensor.
Learn more about exterior angles here: