Alrighty
squaer base so length=width, nice
v=lwh
but in this case, l=w, so replace l with w
V=w²h
and volume is 32000
32000=w²h
the amount of materials is the surface area
note that there is no top
so
SA=LW+2H(L+W)
L=W so
SA=W²+2H(2W)
SA=W²+4HW
alrighty
we gots
SA=W²+4HW and
32000=W²H
we want to minimize the square foottage
get rid of one of the variables
32000=W²H
solve for H
32000/W²=H
subsitute
SA=W²+4WH
SA=W²+4W(32000/W²)
SA=W²+128000/W
take derivitive to find the minimum
dSA/dW=2W-128000/W²
where does it equal 0?
0=2W-1280000/W²
128000/W²=2W
128000=2W³
64000=W³
40=W
so sub back
32000/W²=H
32000/(40)²=H
32000/(1600)=H
20=H
the box is 20cm height and the width and length are 40cm
7,200 = (24)(20)h
15=h (just divide)
To check, 20*24*15 = 7,200 cubic centimeters so 15 cm is right
Answer:
Ygggg
Step-by-step explanation:
Gggt
Answer:
$7.25
Step-by-step explanation:
First hour=3.50
still have 1 1/2 hours left =3 half hours
1.25x 3=3.75
3.50+3.75=7.25
Answer:
Step-by-step explanation:
(3x - 1)(3x - 4) = 9x^2 - 15x + 4
(x + 2)(9x^2 - 15x + 4) = 9x^3 - 15x^2 + 4x + 18x^2 - 30x + 8
9x^3 + 3x^2 -26x + 8 is the solution