The cross product of the normal vectors of two planes result in a vector parallel to the line of intersection of the two planes.
Corresponding normal vectors of the planes are
<5,-1,-6> and <1,1,1>
We calculate the cross product as a determinant of (i,j,k) and the normal products
i j k
5 -1 -6
1 1 1
=(-1*1-(-6)*1)i -(5*1-(-6)1)j+(5*1-(-1*1))k
=5i-11j+6k
=<5,-11,6>
Check orthogonality with normal vectors using scalar products
(should equal zero if orthogonal)
<5,-11,6>.<5,-1,-6>=25+11-36=0
<5,-11,6>.<1,1,1>=5-11+6=0
Therefore <5,-11,6> is a vector parallel to the line of intersection of the two given planes.
Answer:
do not sell them
Step-by-step explanation:
bc i alredy did
Answer:
Local minimum at x = 0.
Step-by-step explanation:
Local minimums occur when g'(x) = 0 and g"(x) > 0.
Local maximums occur when g'(x) = 0 and g"(x) < 0.
Set g'(x) equal to 0 and solve:
0 = 2x (x − 1)² (x + 1)²
x = 0, 1, or -1
Evaluate g"(x) at each point:
g"(0) = 2
g"(1) = 0
g"(-1) = 0
There is a local minimum at x = 0.
Answer:
Camacho pays in total for the monster truck = $x + $0.13x = $1.13x
Step-by-step explanation:
i.) The price of truck is $x
ii.) Monstor truck tax = 13% of price of truck =
= $0.13x
iii) Camacho pays in total for the monster truck = $x + $0.13x = $1.13x