Two transformations that can be used to show that polygon ABCDE is congruent to polygon GFJIH : <u>rotation -90° and translation (0,2)</u>
<h3>Further explanation</h3>
There are several forms of transformation, including translation, dilation, rotation or reflection
There are 2 shapes of geometry:
Similar figures:
the same shape but different in size,
Congruent figures:
the same size and the same shape
Both polygons will appear congruent if, after being transformed, the two polygons will map exactly to each other
A sequence of two transformations e can do is :
1. rotation -90°
Let point H(4,1) from polygon GFJIH , we rotate -90°
![\left[\begin{array}{ccc}x'\\y'\end{array}\right]=\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]\left[\begin{array}{ccc}4-6\\1+1\end{array}\right]+\left[\begin{array}{ccc}6\\-1\end{array}\right]\\\\=\left[\begin{array}{ccc}0&1\\-1&0\end{array}\right]\left[\begin{array}{ccc}-2\\2\end{array}\right]+\left[\begin{array}{ccc}6\\-1\end{array}\right]\\\\=\left[\begin{array}{ccc}8\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%27%5C%5Cy%27%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C-1%260%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4-6%5C%5C1%2B1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%5C%5C-1%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C-1%260%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%5C%5C2%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%5C%5C-1%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
2. translation (0,2)
![\left[\begin{array}{ccc}8\\1\end{array}\right]+\left[\begin{array}{ccc}0\\2\end{array}\right]=\left[\begin{array}{ccc}8\\3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%5C%5C1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C2%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D8%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
<h3 /><h3>Learn more</h3>
brainly.com/question/13715226
Keywords: transformation, translation, rotation
#LearnWithBrainly