Answer:
See explanation
Explanation:
For this question, we have to remember the effect of an atom with high <u>electronegativity</u> as "Br". If the "Br" atom is closer to the carboxylic acid group (COOH) we will have an <u>inductive effect</u>. Due to the electronegativity of Br, the electrons of the C-H bond would be to the Br, then this bond would be <u>weaker</u> and the compound will be more acid (because is easier to produce the hydronium ion
).
With this in mind, for A in the last compound, we have <u>2 Br atoms</u> near to the acid carboxylic group, so, we will have a high inductive effect, then the C-H would be weaker and we will have <u>more acidity</u>. Then we will have the compound with only 1 Br atom and finally, the last compound would be the one without Br atoms.
In B, the difference between the molecules is the <u>position</u> of the "Br" atom in the molecule. If the Br atom is closer to the acid group we will have a <u>higher inductive effect</u> and more <u>acidity</u>.
See figure 1
I hope it helps!
Answer:
[Cl⁻] = 0.016M
Explanation:
First of all, we determine the reaction:
Pb(NO₃)₂ (aq) + MgCl₂ (aq) → PbCl₂ (s) ↓ + Mg(NO₃)₂(aq)
This is a solubility equilibrium, where you have a precipitate formed, lead(II) chloride. This salt can be dissociated as:
PbCl₂(s) ⇄ Pb²⁺ (aq) + 2Cl⁻ (aq) Kps
Initial x
React s
Eq x - s s 2s
As this is an equilibrium, the Kps works as the constant (Solubility product):
Kps = s . (2s)²
Kps = 4s³ = 1.7ₓ10⁻⁵
4s³ = 1.7ₓ10⁻⁵
s = ∛(1.7ₓ10⁻⁵ . 1/4)
s = 0.016 M
Answer:
157.8 g
Explanation:
Step 1: Write the balanced equation
Fe₂O₃ + 3 CO ⟶ 3 CO₂ + 2 Fe
Step 2: Calculate the moles corresponding to 209.7 g of Fe
The molar mass of Fe is 55.85 g/mol
209.7 g × 1 mol/55.85 g = 3.755 mol
Step 3: Calculate the moles of CO needed to produce 3.755 moles of Fe
The molar ratio of CO to Fe is 3:2. The moles of CO needed are 3/2 × 3.755 = 5.633 mol
Step 4: Calculate the mass corresponding to 5.633 moles of CO
The molar mass of CO is 28.01 g/mol.
5.633 mol × 28.01 g/mol = 157.8 g
Answer:
232.5 g C2H6O2
Explanation:
The equation you need to use here is ΔTf = i Kf m
Since pure water freezes at 0 C, your ΔTf is just 4.46 C
i = 1 (ethylene glycol is a weak electrolyte)
Kf = molal freezing constant, which for water is 1.86 C/m
m = molality = x mols C2H6O2 / 1.15 kg H2O (don't know the moles of ethylene glycol we're dissolving yet)
Than,
4.46 C = 1.86 C/m (x mol C2H6O2 / 1.15 kg H2O)
Solve for x, you should get x = 2.75 mol C2H6O2
3.75 mol C2H6O2 (62 g C2H6O2 / 1 mol C2H6O2) = 232.5 g C2H6O2
Answer:
1. it is symbolized as 4/2 He
: Alpha rays
2. it has the weakest penetrating power
: Alpha rays
3. It is a high-speed electron
: beta rays
4. It possesses neither mass nor charge
: gamma rays
5. it has the strongest penetrating power
: beta rays
6. its is symbolized as 0/-1e
: beta rays
7. it is the most massive of all the components: alpha rays
Explanation:
Let us consider the characteristics of each of the given rays.
α rays: These are helium nucleus so are symbolized by 
Due to two protons and two neutrons unlike beta and gamma rays these are the most massive and thus have least penetrating power among the three given rays.
β rays: These are actually high speed electrons and are symbolized as
. Due to lesser mass than alpha rays they are more penetrating than them however less penetrating than gamma rays.
γ rays : They carry no charge or mass. Due to least massive among the three rays they have highest penetrating power.