All the particles gain more energy and move quicker and therefore they spread out causing air to expand
Answer:
191.6 g of CaCl₂.
Explanation:
What is given?
Mass of HCl = 125.9 g.
Molar mass of CaCl₂ = 110.8 g/mol.
Molar mass of HCl = 36.4 g/mol.
Step-by-step solution:
First, we have to state the chemical equation. Ca(OH)₂ react with HCl to produce CaCl₂:

Now, let's convert 125.9 g of HCl to moles using the given molar mass (remember that the molar mass of a compound can be found using the periodic table). The conversion will look like this:

Let's find how many moles of CaCl₂ are being produced by 3.459 moles of HCl. You can see in the chemical equation that 2 moles of HCl reacted with excess Ca(OH)₂ produces 1 mol of CaCl₂, so we state a rule of three and the calculation is:

The final step is to find the mass of CaCl₂ using the molar mass of CaCl₂. This conversion will look like this:

The answer would be that we're producing a mass of 191.6 g of CaCl₂.
Answer:
53.6 g of N₂H₄
Explanation:
The begining is in the reaction:
N₂(g) + 2H₂(g) → N₂H₄(l)
We determine the moles of each reactant:
59.20 g / 28.01 g/mol = 2.11 moles of nitrogen
6.750 g / 2.016 g/mol = 3.35 moles of H₂
1 mol of N₂ react to 2 moles of H₂
Our 2.11 moles of N₂ may react to (2.11 . 2) /1 = 4.22 moles of H₂, but we only have 3.35 moles. The hydrogen is the limiting reactant.
2 moles of H₂ produce at 100 % yield, 1 mol of hydrazine
Then, 3.35 moles, may produce (3.35 . 1)/2 = 1.67 moles of N₂H₄
Let's convert the moles to mass:
1.67 mol . 32.05 g/mol = 53.6 g
Answer:
Production of liquid oxygen from air Oxygen is generated by liquefaction of atmospheric air in the air separation unit (ASU). Cryogenic technique is the most commonly used for producing liquid oxygen for industrial and medical applications .
Explanation: