It is a completely false statement that in <span>any energy transformation, there is always some energy that gets wasted as non-useful heat. The correct option among the two options that are given in the question is the second option. I hope that this is the answer that has actually come to your desired help.</span>
Answer:
Displacement: 6.71 m, Direction: 63.4 degrees north of east
Explanation:
In the attached image we can aprecciate each one of the movements of the parade. Let's say that the parade started from the origin (point (0,0)) then it moves to the east 4 blocks it means now the parade is located at point (4,0).
Then the parade went to the south three blocks, so it moves to the coordinate (4,-3). After this the parade went to the west one block so the new coordinate point is (3, -3).
And finally the movement of the 0 parade was 9 blocks to the north. It means the final point is now (0,9) - (3,-3) = (3,6)
And the displacement will be defined by the folliwing vector operation:

We know that the magnitude of the displacement vector is defined by the phytagoras theorem

And the angle will be defined by:
tan(beta)=3/6
beta = tan^-1(6/3)
beta = 63.43°
Here are the planets listed in order of their distance from the Sun: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. An easy mnemonic for remembering the order is “My Very Educated Mother Just Served Us Noodles
Hope this helps.
There is NO planet that has a temperature even close to the Earth. The closest<span> would be Mars with a max of -5oC.</span>
Answer:
Gravitational potential energy to kinetic energy
Explanation:
In this case you have a case about conservation of energy.
When the mass is released and allowed to fall, its energy is completely gravitational potential energy with a value of U = mgh. m is the mass, g is the gravitational constant and h is the height to the floor from the mass.
While the mass is falling down part of its potential energy converts to kinetic energy of value K=1/2mv^2, because the mass has been acquiring more and more velocity.
Thus, the kinetic energy is increasing while the potential energy is decreasing.
When the mass is just above the floor (the moment just before the mass hits the floor) all its potential energy has been converted to kinetic energy.
Then, you have that the kinetic energy of the mass when the mass is just above the floor, is equal to the potential energy when the mass is at height of h. That is:

This is how the law of conservation of energy is fulfilled.