9 dived by 3 = 3
so he surfed for 3 hours = 1/3 of 9
and there are 6 hours left
so he spent 6 hours building a sandcastle
Answer:
25
Step-by-step explanation:
Let n be the first integer.
Then the second integer will be (n + 1).
And the third will be (n + 2).
The sum is 78. Therefore:

Solve for n. Combine like terms:

So:

Therefore:

Therefore, the first integer is 25.
So our sequene is 25, 26, and 27.
The integer closest to zero will thus be 25.
g(x) is basically transformed f(x). First, let's focus on f(x) graph. Notice how the graph has slope of 1 and intersect y-axis at (0,0).
Which means that our equation for f(x) is:

Now then we focus on g(x). g(x) is f(x+k). That means if f(x) = x then f(x+k) would mean substitute x = x+k in the equation.

Next, we want to find the value of k. In the slope-intercept form or y = mx+b where m = slope and b = y-intercept. Notice the g(x) graph and see that the graph intersects y-axis at (0,4). Therefore k = y-intercept = 4.

Answer
- g(x) = x+4
- Therefore the value of k is 4.
Answer:
37x
Step-by-step explanation:
Since it has a square root you can square it to get rid of it so your final answer is 37x
Using the <u>normal distribution and the central limit theorem</u>, it is found that the interval that contains 99.44% of the sample means for male students is (3.4, 3.6).
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
In this problem:
- The mean is of
.
- The standard deviation is of
.
- Sample of 100, hence

The interval that contains 95.44% of the sample means for male students is <u>between Z = -2 and Z = 2</u>, as the subtraction of their p-values is 0.9544, hence:
Z = -2:

By the Central Limit Theorem




Z = 2:




The interval that contains 99.44% of the sample means for male students is (3.4, 3.6).
You can learn more about the <u>normal distribution and the central limit theorem</u> at brainly.com/question/24663213