1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cupoosta [38]
3 years ago
10

Is (2, 4) a solution to the equation y = x2?​

Mathematics
1 answer:
alisha [4.7K]3 years ago
7 0

Answer:

I think so maybe I'm not really sure

You might be interested in
A scientist is studying red maple tree growth in a state park. She measured the trunk diameters of a sample of trees in the same
PolarNik [594]
The answer for dis is 22
3 0
4 years ago
Divide. Will mark brainliest.
horrorfan [7]

Answer:

7t^5 - t^3

6x -3 +2x/y

Step-by-step explanation:

A.  (7t^8 - t^6)/t^3

Separate into 2 fractions

(7t^8/t^3) - (t^6)/t^3

Remember a^b / a^c = a^ (b-c)

7 t^(8-3) - t^(6-3)

7t^5 - t^3

B (12x^2y - 6xy +4x^2)/2xy

Separate into 3 fractions

12x^2y/2xy - 6xy/2xy +4x^2/2xy

Remember a^b / a^c = a^ (b-c)

12/2 x^(2-1) y^(1-1) - 6/2 x/x * y/y +4/2 x^(2-1) /y

6 x y^0 -3*1*1 +2 x/y

Remember that x^0 = 1

6x -3 +2x/y

5 0
3 years ago
What annual simple interest rate will increase Jacob Davidson’s initial investment of $5,000 to $6,000 in two years?
erica [24]
A its 10 percent because of the amount of money he has in his account  <span />
7 0
3 years ago
Read 2 more answers
Differentiating a Logarithmic Function in Exercise, find the derivative of the function. See Examples 1, 2, 3, and 4.
mote1985 [20]

Answer:

\frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

Step-by-step explanation:

To find the derivative of the function y(x)=\ln \left(\frac{x}{x^2+1}\right) you must:

Step 1. Rewrite the logarithm:

\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 2. The derivative of a sum is the sum of derivatives:

\left(\ln{\left(x \right)} - \ln{\left(x^{2} + 1 \right)}\right)^{\prime }}={\left(\left(\ln{\left(x \right)}\right)^{\prime } - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }\right)

Step 3. The derivative of natural logarithm is \left(\ln{\left(x \right)}\right)^{\prime }=\frac{1}{x}

{\left(\ln{\left(x \right)}\right)^{\prime }} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }={\frac{1}{x}} - \left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }

Step 4. The function \ln{\left(x^{2} + 1 \right)} is the composition f\left(g\left(x\right)\right) of two functions f\left(u\right)=\ln{\left(u \right)} and u=g\left(x\right)=x^{2} + 1

Step 5.  Apply the chain rule \left(f\left(g\left(x\right)\right)\right)^{\prime }=\frac{d}{du}\left(f\left(u\right)\right) \cdot \left(g\left(x\right)\right)^{\prime }

-{\left(\ln{\left(x^{2} + 1 \right)}\right)^{\prime }} + \frac{1}{x}=- {\frac{d}{du}\left(\ln{\left(u \right)}\right) \frac{d}{dx}\left(x^{2} + 1\right)} + \frac{1}{x}\\\\- {\frac{d}{du}\left(\ln{\left(u \right)}\right)} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- {\frac{1}{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}

Return to the old variable:

- \frac{1}{{u}} \frac{d}{dx}\left(x^{2} + 1\right) + \frac{1}{x}=- \frac{\frac{d}{dx}\left(x^{2} + 1\right)}{{\left(x^{2} + 1\right)}} + \frac{1}{x}

The derivative of a sum is the sum of derivatives:

- \frac{{\frac{d}{dx}\left(x^{2} + 1\right)}}{x^{2} + 1} + \frac{1}{x}=- \frac{{\left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right)}}{x^{2} + 1} + \frac{1}{x}=\frac{1}{x^{3} + x} \left(x^{2} - x \left(\frac{d}{dx}\left(1\right) + \frac{d}{dx}\left(x^{2}\right)\right) + 1\right)

Step 6. Apply the power rule \frac{d}{dx}\left(x^{n}\right)=n\cdot x^{-1+n}

\frac{1}{x^{3} + x} \left(x^{2} - x \left({\frac{d}{dx}\left(x^{2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(x^{2} - x \left({\left(2 x^{-1 + 2}\right)} + \frac{d}{dx}\left(1\right)\right) + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x \frac{d}{dx}\left(1\right) + 1\right)\\

\frac{1}{x^{3} + x} \left(- x^{2} - x {\frac{d}{dx}\left(1\right)} + 1\right)=\\\\\frac{1}{x^{3} + x} \left(- x^{2} - x {\left(0\right)} + 1\right)=\\\\\frac{1 - x^{2}}{x \left(x^{2} + 1\right)}

Thus, \frac{d}{dx}\left(\ln \left(\frac{x}{x^2+1}\right)\right)=\left(\ln{\left(\frac{x}{x^{2} + 1} \right)}\right)^{\prime }=\frac{-x^2+1}{x\left(x^2+1\right)}

3 0
3 years ago
PLEASE HELP!! which answer is correct??
ad-work [718]
Option( d ) is the correct one.
4 0
3 years ago
Other questions:
  • The seventh grade boys at colonial Christian school removed 1/3 of the 558 chairs in the auditorium how many chairs did they rem
    9·1 answer
  • I'm not quite sure about this one. Can someone help? -Concept: Logs-
    9·2 answers
  • enrico wrote four checks last month, and these were the only transactions for checking account. According to his check register,
    15·1 answer
  • To get from home to work, Felix can either take a bike path through the rectangular park or ride his bike along two sides of the
    10·1 answer
  • ACTIVITY 10
    15·2 answers
  • Cual es la circunferencia de un circulo cuyo diametro es de 8
    12·1 answer
  • What is equivalent 14×14
    11·2 answers
  • This set of numbers has a mean of 762. <br> fill in the missing number<br><br> 148, 926, 1804, ____
    11·2 answers
  • Find the value of x that solves the system shown below.<br> y = 5x<br> 2x - y = 18
    6·1 answer
  • Mrs. Harrison is 15 ounces of dark chocolate while baking. She used 3/5 of the chocolate to make some frosting and used the rest
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!