1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
2 years ago
15

IF ANYONE HELPS ME WITH THIS I WILL GIVE U BRAINLIEST AND 100 POINTS BTW ITS INTEGRALS FOR CALCULUS

Mathematics
1 answer:
dlinn [17]2 years ago
5 0

Answer:

\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{e^\bigg{\frac{1}{4}}}{8} - \frac{e^\bigg{\frac{1}{9}}}{8}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring
  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

eˣ Integration:                                                                                                         \displaystyle \int {e^u} \, dx = e^u + C

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Derivative Rule - Basic Power Rule]:                               \displaystyle du = -8x^{-3} \ dx
  3. [<em>du</em>] Rewrite [Exponential Rule - Rewrite]:                                                   \displaystyle du = \frac{-8}{x^3} \ dx

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^6_4 {\frac{-8}{x^3}e^{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                                \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{1}{9}}_{\frac{1}{4}} {e^u} \, dx
  3. [Integral] eˣ Integration:                                                                                \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}(e^u) \bigg| \limits^{\frac{1}{9}}_{\frac{1}{4}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:          \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8} \bigg[ -e^\bigg{\frac{1}{9}} \bigg( e^\bigg{\frac{5}{36}} - 1 \bigg) \bigg]
  5. Simplify:                                                                                                         \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{e^\bigg{\frac{1}{4}}}{8} - \frac{e^\bigg{\frac{1}{9}}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
Please help ASAP thank youu!!
Gennadij [26K]

Answer:

1. (-5)

Step-by-step explanation:

Here you go, glad to help :)

4 0
3 years ago
If f(x)=2x and g(x)=1/x what is the domain of (f•g)(x)
Leona [35]

Answer:g(x) is the domain...

Step-by-step explanation:

I don't say u must have to mark my ans as brainliest but if it has really helped u plz don't forget to thnk me...

3 0
2 years ago
Read 2 more answers
Identify the monomial function(s) that have a maximum.
natima [27]

Answer:

Step-by-step explanation:

For a function f to have a maximum as per derivative rule we have to have

f'(x) =0, f"(x) <0

If second derivative =0 also then it is not maximum but point of inflections

Whenever f(x) = ax^n

we have

f'(x) = 0 gives x=0 and

f"(x) = n(n-1) ax ^(n-2)

So for n greater than or equal to there cannot be any maximum

And also for a straight line

y =-4x

y'=-4 and y"-0

No maximum

So only maximum can be for a funciton of the form y = ax^2

Here we do not have that all degrees are either 1 or greater than 1.

So no maximum for any funciton.

4 0
3 years ago
Read 2 more answers
Question 8<br> 8  pts + 4 pts for the best answer Thanks!<br> Question is attached.
elena-14-01-66 [18.8K]
The answer will be -3
5 0
2 years ago
Read 2 more answers
Subtact: (9x - 8) - (x + 4)​
Bond [772]

Answer:

the answer is 8x-12

Step-by-step explanation:

7 0
2 years ago
Other questions:
  • Add 5 and 14 , triple the sum and then add four fifth
    15·2 answers
  • How many different arrangements of 7 letters can be formed if the first letter must be w or k? (repeats of letters are? allowed)
    12·1 answer
  • Complete the calculation how to find partial products<br><br> 1 2 4<br> × 2<br> ----------
    13·1 answer
  • Fill in the blanks
    9·1 answer
  • The lengths of pregnancies in a small rural village are normally distributed with a mean of 261 days and a standard deviation of
    11·1 answer
  • N divided Into 8 is what
    5·1 answer
  • A chemist begins with 120 mL of a radioactive substance that decays exponentially. After 24 hours, only 30 mL of the substance r
    12·1 answer
  • 7th grade Girl!
    6·1 answer
  • Given that the straight line 2x + 3y-10=0 intersects the x - axis at P. Find the
    12·1 answer
  • Frazer cycles the first 20 miles at an average speed of 21 mph. The second part is more uphill, and he only manages 13mph. By wh
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!