1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
3 years ago
15

IF ANYONE HELPS ME WITH THIS I WILL GIVE U BRAINLIEST AND 100 POINTS BTW ITS INTEGRALS FOR CALCULUS

Mathematics
1 answer:
dlinn [17]3 years ago
5 0

Answer:

\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{e^\bigg{\frac{1}{4}}}{8} - \frac{e^\bigg{\frac{1}{9}}}{8}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring
  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

eˣ Integration:                                                                                                         \displaystyle \int {e^u} \, dx = e^u + C

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Derivative Rule - Basic Power Rule]:                               \displaystyle du = -8x^{-3} \ dx
  3. [<em>du</em>] Rewrite [Exponential Rule - Rewrite]:                                                   \displaystyle du = \frac{-8}{x^3} \ dx

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^6_4 {\frac{-8}{x^3}e^{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                                \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{1}{9}}_{\frac{1}{4}} {e^u} \, dx
  3. [Integral] eˣ Integration:                                                                                \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}(e^u) \bigg| \limits^{\frac{1}{9}}_{\frac{1}{4}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:          \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8} \bigg[ -e^\bigg{\frac{1}{9}} \bigg( e^\bigg{\frac{5}{36}} - 1 \bigg) \bigg]
  5. Simplify:                                                                                                         \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{e^\bigg{\frac{1}{4}}}{8} - \frac{e^\bigg{\frac{1}{9}}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
A circle has a radius of 6 inches and a central angle of 60°. What is the measure of the arc length associated with this angle?
Readme [11.4K]

Answer:

2\pi

Step-by-step explanation:

first you take 60°/360°= 1/6   then you take 1/6 and multiple it by 2\pi and that equals \frac{\pi }{3}   finally take  \frac{\pi }{3}  times the radius (6) and that should equal 2\pi

PLATO USERS #platolivesmatters

6 0
3 years ago
Which equation has infinitely many solutions?
erma4kov [3.2K]
The fourth one has many
3 0
3 years ago
Read 2 more answers
Will mark brainliest
Ede4ka [16]

Answer:

350

Step-by-step explanation:

7 0
3 years ago
A sample of marble has a volume of 6 cm3 and a density of 2.76 g/cm3. What is its mass?
Drupady [299]

Answer:

16.56\ g

Step-by-step explanation:

we know that

The density is equal to the mass divided by the volume

Let

x-----> the mass of marble

y----> the volume of marble

z----> the density of marble

z=\frac{x}{y}

in this problem we have

y=6\ cm^{3}

z=2.76\ g/cm^{3}

substitute and solve for x

2.76=\frac{x}{6}

x=2.76*6=16.56\ g


3 0
3 years ago
Read 2 more answers
How to solve this task 4×-2+1=3×+5
just olya [345]
4x-2+1=3x+5

Subtract 3x from both sides

x-2+1=5

Same as

x-1=5

Add 1 to both sides

x=6
8 0
3 years ago
Other questions:
  • What is 52 to the second power times 2
    14·2 answers
  • 2. Tammy is baking cookies for a bake
    12·1 answer
  • Hi there, can anyone help me with this question?
    5·1 answer
  • Represent 3/4 on the number line<br><br> PLEASE ANSWER.......I HAVE TO ANSWER NOW.....
    5·1 answer
  • Find the slope of the line whose equation is 7x-2y=4
    10·2 answers
  • What is net cash flow
    9·1 answer
  • If Patrick scored 33 marks out of a possible 55 marks, what % did he get?
    13·1 answer
  • What is the value of -4.4+ (5-2)(-6)?
    15·2 answers
  • Write an equation for the line in point-slope and slope-intercept forms.
    13·2 answers
  • Determine the volume of the shaded area.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!