1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
2 years ago
15

IF ANYONE HELPS ME WITH THIS I WILL GIVE U BRAINLIEST AND 100 POINTS BTW ITS INTEGRALS FOR CALCULUS

Mathematics
1 answer:
dlinn [17]2 years ago
5 0

Answer:

\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{e^\bigg{\frac{1}{4}}}{8} - \frac{e^\bigg{\frac{1}{9}}}{8}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring
  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

eˣ Integration:                                                                                                         \displaystyle \int {e^u} \, dx = e^u + C

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Derivative Rule - Basic Power Rule]:                               \displaystyle du = -8x^{-3} \ dx
  3. [<em>du</em>] Rewrite [Exponential Rule - Rewrite]:                                                   \displaystyle du = \frac{-8}{x^3} \ dx

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^6_4 {\frac{-8}{x^3}e^{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                                \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{1}{9}}_{\frac{1}{4}} {e^u} \, dx
  3. [Integral] eˣ Integration:                                                                                \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8}(e^u) \bigg| \limits^{\frac{1}{9}}_{\frac{1}{4}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:          \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8} \bigg[ -e^\bigg{\frac{1}{9}} \bigg( e^\bigg{\frac{5}{36}} - 1 \bigg) \bigg]
  5. Simplify:                                                                                                         \displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{e^\bigg{\frac{1}{4}}}{8} - \frac{e^\bigg{\frac{1}{9}}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

You might be interested in
Question 3
hichkok12 [17]

Answer:

The relationship between the lengths of the line segments doesn't change. In all the cases, AB = CD and AC = BD.

Step-by-step explanation:

this is the exact answer word for word, so id recommend to put it in your own words

ex. when i move one point the other points move so the lengths stay equal to each other

4 0
3 years ago
Read 2 more answers
Jamie kept track of the total hours and minutes she worked this week at the local health food store.
ziro4ka [17]

Answer:

18.05

Step-by-step explanation:

3 0
2 years ago
What is the answer to #3?
Rudiy27
I believe the answer is the last option choice. 
6 0
3 years ago
Belle bought 18 seeds in order to plant an herb garden for her grandma. Of the seeds she bought, 10 were parsley seeds.
Harrizon [31]

Answer:

  0.3431

Step-by-step explanation:

Here, it can work well to consider the seeds from the group of 18 that are NOT selected to be part of the group of 15 that are planted.

There are 18C3 = 816 ways to choose 3 seeds from 18 NOT to plant.

We are interested in the number of ways exactly one of the 10 parsley seeds can be chosen NOT to plant. For each of the 10C1 = 10 ways we can ignore exactly 1 parsley seed, there are also 8C2 = 28 ways to ignore two non-parsley seeds from the 8 that are non-parsley seeds.

That is, there are 10×28 = 280 ways to choose to ignore 1 parsley seed and 2 non-parsley seeds.

So, the probability of interest is 280/816 ≈ 0.3431.

___

The notation nCk is used to represent the expression n!/(k!(n-k)!), the number of ways k objects can be chosen from a group of n. It can be pronounced "n choose k".

6 0
3 years ago
Which of the following is an rational number?
Mumz [18]
C. The square root of 144
7 0
3 years ago
Read 2 more answers
Other questions:
  • A circular fountain 10 feet in diameter has a circular walk 3 feet wide paved around it.What is the area of the walk?
    12·1 answer
  • Please help!!!!!!!!!!!!!!!!!!!! Due tomorrow
    5·1 answer
  • Can anybody help me please
    6·2 answers
  • Which of the following describes the movement of a figure that is translated according to the rule below? (x,y) (x-7,y+1) Questi
    9·2 answers
  • Create a Halloween word problem that can be represented by negative 6 divided by one and one-third.
    8·2 answers
  • Dave builds a wheelchair ramp with 1 metre of wood. He wants the vertical height of the ramp to be 50 centimetres. What does the
    8·1 answer
  • What is the domain of the given function?
    12·2 answers
  • A 31-foot support wire is attached from the top of a 25 foot telephone pole to a point on the ground. How far from the base pole
    14·1 answer
  • 4(2x - 5) + 15 = 11
    12·1 answer
  • Find the value of each variable
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!