Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Terms/Coefficients
- Factoring
- Exponential Rule [Rewrite]:

<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integrals
Integration Constant C
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
eˣ Integration: 
Step-by-step explanation:
<u>Step 1: Define</u>

<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution.</em>
- Set:

- [<em>u</em>] Differentiate [Derivative Rule - Basic Power Rule]:

- [<em>du</em>] Rewrite [Exponential Rule - Rewrite]:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] U-Substitution:

- [Integral] eˣ Integration:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^6_4 {\frac{1}{x^3}e^{4x^{-2}}} \, dx = \frac{-1}{8} \bigg[ -e^\bigg{\frac{1}{9}} \bigg( e^\bigg{\frac{5}{36}} - 1 \bigg) \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E6_4%20%7B%5Cfrac%7B1%7D%7Bx%5E3%7De%5E%7B4x%5E%7B-2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7B-1%7D%7B8%7D%20%5Cbigg%5B%20-e%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B9%7D%7D%20%5Cbigg%28%20e%5E%5Cbigg%7B%5Cfrac%7B5%7D%7B36%7D%7D%20-%201%20%5Cbigg%29%20%5Cbigg%5D)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e